The fundamental concept of time-lapse seismic monitoring is that changes in physical parameters-such as saturation, pore fluid pressure, temperature, and stress-affect rock and fluid properties, which in turn alter the seismic velocity and density. Increasingly, however, time-lapse seismic monitoring is called upon to quantify subsurface changes due in part to chemical reactions between injected fluids and the host rocks. This study springs from a series of laboratory experiments and high-resolution images assessing the changes in microstructure, transport, and seismic properties of fluid-saturated sandstones and carbonates injected with CO2. Results show that injecting CO2 into a brine-rock system induces chemo-mechanical mechanisms that permanently change the rock frame. Injecting CO2 into brine-saturated-sandstones induces salt precipitation primarily at grain contacts and within small pore throats. In rocks with porosity lower than 10%, salt precipitation reduces permeability and increases P- and S-wave velocities of the dry rock frame. On the other hand, injecting CO2-rich water into micritic carbonates induces dissolution of the microcrystalline matrix, leading to porosity enhancement and chemo-mechanical compaction under pressure. In this situation, the elastic moduli of the dry rock frame decrease. The results in these two scenarios illustrate that the time-lapse seismic response of chemically stimulated systems cannot be modeled as a pure fluid-substitution problem. A first set of empirical relationships links the time-variant effects of injection to the elastic properties of the rock frame using laboratory velocity measurements and advanced imaging.