Unsupervised Multi-Task Feature Learning on Point Clouds

被引:124
|
作者
Hassani, Kaveh [1 ]
Haley, Mike [2 ]
机构
[1] Autodesk AI Lab, Toronto, ON, Canada
[2] Autodesk AI Lab, San Francisco, CA USA
关键词
NETWORKS;
D O I
10.1109/ICCV.2019.00825
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce an unsupervised multi-task model to jointly learn point and shape features on point clouds. We define three unsupervised tasks including clustering, reconstruction, and self-supervised classification to train a multi-scale graph-based encoder. We evaluate our model on shape classification and segmentation benchmarks. The results suggest that it outperforms prior state-of-the-art unsupervised models: In the ModelNet40 classification task, it achieves an accuracy of 89.1% and in ShapeNet segmentation task, it achieves an mIoU of 68.2 and accuracy of 88.6%.
引用
收藏
页码:8159 / 8170
页数:12
相关论文
共 50 条
  • [1] A Multi-task Learning Framework for Semantic Segmentation in MLS Point Clouds
    Lin, Xi
    Luo, Huan
    Guo, Wenzhong
    Wang, Cheng
    Li, Jonathan
    [J]. ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 382 - 392
  • [2] Unsupervised Task Clustering for Multi-task Reinforcement Learning
    Ackermann, Johannes
    Richter, Oliver
    Wattenhofer, Roger
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, 2021, 12975 : 222 - 237
  • [3] Convex multi-task feature learning
    Andreas Argyriou
    Theodoros Evgeniou
    Massimiliano Pontil
    [J]. Machine Learning, 2008, 73 : 243 - 272
  • [4] Convex multi-task feature learning
    Argyriou, Andreas
    Evgeniou, Theodoros
    Pontil, Massimiliano
    [J]. MACHINE LEARNING, 2008, 73 (03) : 243 - 272
  • [5] Multi-Task Feature Interaction Learning
    Lin, Kaixiang
    Xu, Jianpeng
    Baytas, Inci M.
    Ji, Shuiwang
    Zhou, Jiayu
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1735 - 1744
  • [6] Learning Task Relational Structure for Multi-Task Feature Learning
    Wang, De
    Nie, Feiping
    Huang, Heng
    [J]. 2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1239 - 1244
  • [7] Feature Analysis of Unsupervised Learning for Multi-task Classification Using Convolutional Neural Network
    Kim, Jonghong
    Bukhari, Waqas
    Lee, Minho
    [J]. NEURAL PROCESSING LETTERS, 2018, 47 (03) : 783 - 797
  • [8] Feature Analysis of Unsupervised Learning for Multi-task Classification Using Convolutional Neural Network
    Jonghong Kim
    Waqas Bukhari
    Minho Lee
    [J]. Neural Processing Letters, 2018, 47 : 783 - 797
  • [9] Multi-Stage Multi-Task Feature Learning
    Gong, Pinghua
    Ye, Jieping
    Zhang, Changshui
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 2979 - 3010
  • [10] Multi-stage multi-task feature learning
    Gong, Pinghua
    Ye, Jieping
    Zhang, Changshui
    [J]. Journal of Machine Learning Research, 2013, 14 : 2979 - 3010