Solving multicollinearity in functional multinomial logit models for nominal and ordinal responses

被引:8
|
作者
Aguilera, Ana [1 ]
Escabias, Manuel [1 ]
机构
[1] Univ Granada, Dept Stat & OR, E-18071 Granada, Spain
关键词
D O I
10.1007/978-3-7908-2062-1_2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Different functional logit models to estimate a multicategory response variable from a functional predictor will be formulated in terms of different types of logit transformations as base-line category logits for nominal responses or cumulative, adjacent-categories or continuation-ratio logits for ordinal responses. Estimation procedures of functional logistic regression based on functional PCA of sample curves will be generalized to the case of a multicategory response. The true functional form of sample curves will be reconstructed in terms of basis expansions whose coefficients will be estimated from irregularly distributed discrete time observations.
引用
收藏
页码:7 / 13
页数:7
相关论文
共 50 条
  • [1] MULTINOMIAL LOGIT MODELS: MULTICOLLINEARITY AND ITS CONSEQUENCES ON PARAMETER ESTIMATION AND ON INDEPENDENCE FROM IRRELEVANT ALTERNATIVES TESTS
    Lucadamo, Antonio
    D'Ambra, Luigi
    Pagliara, Francesca
    [J]. GLOBAL & LOCAL ECONOMIC REVIEW, 2009, 13 (02): : 125 - 145
  • [2] Multinomial Ordinal Response Models
    Klicnar, Martin
    Cincurova, Lenka
    [J]. MATHEMATICAL METHODS IN ECONOMICS 2013, PTS I AND II, 2013, : 386 - 391
  • [3] Learning Mixed Multinomial Logit Model from Ordinal Data
    Oh, Sewoong
    Shah, Devavrat
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [4] Stochastic prediction in multinomial logit models
    Hsu, A
    Wilcox, RT
    [J]. MANAGEMENT SCIENCE, 2000, 46 (08) : 1137 - 1144
  • [5] Multinomial logit random effects models
    Hartzel, Jonathan
    Agresti, Alan
    Caffo, Brian
    [J]. STATISTICAL MODELLING, 2001, 1 (02) : 81 - 102
  • [6] OVERVIEW OF MULTINOMIAL MODELS FOR ORDINAL DATA
    BARNHART, KX
    SAMPSON, AR
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1994, 23 (12) : 3395 - 3416
  • [7] Revisiting McFadden's correction factor for sampling of alternatives in multinomial logit and mixed multinomial logit models
    Dekker, Thijs
    Bansal, Prateek
    Huo, Jinghai
    [J]. Transportation Research Part B: Methodological, 2025, 192
  • [8] Multinomial probit and multinomial logit: a comparison of choice models for voting research
    Dow, JK
    Endersby, JW
    [J]. ELECTORAL STUDIES, 2004, 23 (01) : 107 - 122
  • [9] Variable selection in general multinomial logit models
    Tutz, Gerhard
    Possnecker, Wolfgang
    Uhlmann, Lorenz
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 82 : 207 - 222
  • [10] DEVELOPMENT OF PARAMETERS OF MULTINOMIAL LOGIT-MODELS
    KHASNABIS, S
    CYNECKI, MJ
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1988, 10 (05) : 315 - 320