Reflection on modern methods: five myths about measurement error in epidemiological research

被引:75
|
作者
van Smeden, Maarten [1 ]
Lash, Timothy L. [2 ]
Groenwold, Rolf H. H. [1 ,3 ]
机构
[1] Leiden Univ, Dept Clin Epidemiol, Med Ctr, Leiden, Netherlands
[2] Emory Univ, Rollins Sch Publ Hlth, Dept Epidemiol, Atlanta, GA 30322 USA
[3] Leiden Univ, Med Ctr, Dept Biomed Data Sci, Leiden, Netherlands
关键词
Measurement error; misclassification; bias; bias corrections; misconceptions; EXPOSURE-MEASUREMENT ERROR; BLOOD-PRESSURE-MEASUREMENT; DIETARY MEASUREMENT ERROR; NONDIFFERENTIAL MISCLASSIFICATION; MULTIPLE-IMPUTATION; ALWAYS BIAS; IMPACT; ASSOCIATION; REGRESSION; VARIABLES;
D O I
10.1093/ije/dyz251
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Epidemiologists are often confronted with datasets to analyse which contain measurement error due to, for instance, mistaken data entries, inaccurate recordings and measurement instrument or procedural errors. If the effect of measurement error is misjudged, the data analyses are hampered and the validity of the study's inferences may be affected. In this paper, we describe five myths that contribute to misjudgments about measurement error, regarding expected structure, impact and solutions to mitigate the problems resulting from mismeasurements. The aim is to clarify these measurement error misconceptions. We show that the influence of measurement error in an epidemiological data analysis can play out in ways that go beyond simple heuristics, such as heuristics about whether or not to expect attenuation of the effect estimates. Whereas we encourage epidemiologists to deliberate about the structure and potential impact of measurement error in their analyses, we also recommend exercising restraint when making claims about the magnitude or even direction of effect of measurement error if not accompanied by statistical measurement error corrections or quantitative bias analysis. Suggestions for alleviating the problems or investigating the structure and magnitude of measurement error are given.
引用
收藏
页码:338 / 347
页数:10
相关论文
共 24 条
  • [1] Reflection on modern methods: planned missing data designs for epidemiological research
    Rioux, Charlie
    Lewin, Antoine
    Odejimi, Omolola A.
    Little, Todd D.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2020, 49 (05) : 1702 - 1711
  • [2] Five myths about scientific research in tourism
    de Oliveira Santos, Glauber Eduardo
    [J]. REVISTA BRASILEIRA DE PESQUISA EM TURISMO, 2023, 17
  • [3] Reflection: Fighting Five Food Myths About the "Good Old Days"
    Andersen, Boris
    Larsen, Morten Hedegaard
    [J]. FOOD AND FOODWAYS, 2015, 23 (04) : 286 - 294
  • [4] Reflection on modern methods: calculating a sample size for a repeatability sub-study to correct for measurement error in a single continuous exposure
    Morgan, Katy E.
    Cook, Sarah
    Leon, David A.
    Frost, Chris
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2019, 48 (05) : 1721 - 1726
  • [5] Raising awareness about measurement error in research on unconscious mental processes
    Vadillo, Miguel A.
    Malejka, Simone
    Lee, Daryl Y. H.
    Dienes, Zoltan
    Shanks, David R.
    [J]. PSYCHONOMIC BULLETIN & REVIEW, 2022, 29 (01) : 21 - 43
  • [6] Raising awareness about measurement error in research on unconscious mental processes
    Miguel A. Vadillo
    Simone Malejka
    Daryl Y. H. Lee
    Zoltan Dienes
    David R. Shanks
    [J]. Psychonomic Bulletin & Review, 2022, 29 : 21 - 43
  • [7] Intercomparison of five PM10 monitoring devices and the implications for exposure measurement in epidemiological research
    Heal, MR
    Beverland, IJ
    McCabe, M
    Hepburn, W
    Agius, RM
    [J]. JOURNAL OF ENVIRONMENTAL MONITORING, 2000, 2 (05): : 455 - 461
  • [8] Measurement error in echocardiographic assessment of aortic stenosis: an epidemiological consideration of research methodology and clinical practice
    Velders, B. J. J.
    Groenwold, R. H. H.
    Kappetein, A. P.
    Braun, J.
    Klautz, R. J. M.
    Vriesendorp, M. D.
    [J]. EUROPEAN HEART JOURNAL, 2022, 43 : 2863 - 2863
  • [9] Reflection on modern methods: a common error in the segmented regression parameterization of interrupted time-series analyses
    Xiao, Hong
    Augusto, Orvalho
    Wagenaar, Bradley H.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2021, 50 (03) : 1011 - 1015
  • [10] Comparison of Direct and Indirect Methods for Five-axis Machine Tools Geometric Error Measurement
    Xing, Kanglin
    Achiche, Sofiane
    Esmaeili, Sareh
    Mayer, J. R. R.
    [J]. 6TH CIRP GLOBAL WEB CONFERENCE - ENVISAGING THE FUTURE MANUFACTURING, DESIGN, TECHNOLOGIES AND SYSTEMS IN INNOVATION ERA (CIRPE 2018), 2018, 78 : 231 - 236