Study the Formation Mechanism of Silicon Carbide Polytype by Silicon Carbide Nanobelts Sintered Under High Pressure

被引:3
|
作者
Wei, Guodong [2 ]
Zhang, Guangqian [1 ,3 ,4 ]
Gao, Fenmei [2 ]
Zheng, Jinju [2 ]
Qin, Yanfen [2 ]
Han, Wei [1 ]
Qin, Weiping [1 ]
Yang, Weiyou [2 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
[2] Ningbo Univ Technol, Ningbo 315016, Zhejiang, Peoples R China
[3] Adv Technol & Mat Co Ltd, Ctr Iron, Beijing 100081, Peoples R China
[4] Adv Technol & Mat Co Ltd, Steel Res Inst, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SiC; Nanobelt; High Pressure; Polytype; BETA-SIC NANOWIRES; PHOTOLUMINESCENCE PROPERTIES; TEMPERATURE; GROWTH; CARBON; PYROLYSIS; FIBER; LAYER;
D O I
10.1166/jnn.2011.5240
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, in order to reveal the formation mechanism of SiC polytype, four SIC specimens sintered under high pressure has been investigated, after being prepared from SiC nanobelts as initial powders. The structure and morphology variation dependence of SiC specimens with temperature and pressure was studied based on experimental data obtained by XRD, SEM, and Raman. The results show that SiC lattice structure and the crystallite size are greatly affected by pressure between 2 and 4 GPa under different sintering temperatures of 800 and 1200 degrees C. At the largest applied pressure and temperature, 4 GPa and 1200 degrees C, 3C-SiC crystal structure can be changed into to R-SiC due to the stress resulted in dislocations instead of planar defects. Based on our results, the multiquantum-well structure based a single one-dimensional nanostructure can be achieved by applying high pressure at certain sintered temperature.
引用
收藏
页码:9752 / 9756
页数:5
相关论文
共 50 条
  • [1] Nonequiaxial grain growth and polytype transformation of sintered α-silicon carbide and β-silicon carbide
    Tanaka, H
    Hirosaki, N
    Nishimura, T
    Shin, DW
    Park, SS
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2003, 86 (12) : 2222 - 2224
  • [2] Polytype formation in silicon carbide single crystals
    Li, Xiang-Biao
    Shi, Er-Wei
    Chen, Zhi-Zhan
    Xiao, Bing
    DIAMOND AND RELATED MATERIALS, 2007, 16 (03) : 654 - 657
  • [3] PRESSURE-SINTERED SILICON CARBIDE
    ALLIEGRO, RA
    COFFIN, LB
    TINKLEPAUGH, JR
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1956, 39 (11) : 386 - 389
  • [4] POLYTYPE DISTRIBUTION IN SILICON-CARBIDE
    FREVEL, LK
    PETERSEN, DR
    SAHA, CK
    JOURNAL OF MATERIALS SCIENCE, 1992, 27 (07) : 1913 - 1925
  • [5] Polytype Inclusions in Cubic Silicon Carbide
    Vasiliauskas, Remigijus
    Malinovskis, Paulius
    Mekys, Algirdas
    Syvajarvi, Mikael
    Storasta, Jurgis
    Yakimova, Rositza
    SILICON CARBIDE AND RELATED MATERIALS 2012, 2013, 740-742 : 335 - +
  • [6] Polytype distribution in circumsteller silicon carbide
    Daulton, TL
    Bernatowicz, TJ
    Lewis, RS
    Messenger, S
    Stadermann, FJ
    Amari, S
    SCIENCE, 2002, 296 (5574) : 1852 - 1855
  • [7] SINTERED SILICON CARBIDE.
    Knoch, H.
    Kracker, J.
    CFI Ceramic Forum International, 1987, 64 (05): : 159 - 163
  • [8] On melting of silicon carbide under pressure
    Sokolov, P. S.
    Mukhanov, V. A.
    Chauveau, T.
    Solozhenko, V. L.
    JOURNAL OF SUPERHARD MATERIALS, 2012, 34 (05) : 339 - 341
  • [9] Structure formation and electrophysical properties of a silicon carbide boron carbide sintered composite
    Shipilova, LA
    Petrovskii, VY
    Chugunova, SI
    POWDER METALLURGY AND METAL CERAMICS, 1997, 36 (11-12) : 652 - 656
  • [10] On melting of silicon carbide under pressure
    P. S. Sokolov
    V. A. Mukhanov
    T. Chauveau
    V. L. Solozhenko
    Journal of Superhard Materials, 2012, 34 : 339 - 341