Nonisothermal diffusion-reaction with nonlinear Kramers kinetics

被引:1
|
作者
Ortiz de Zarate, Jose M. [1 ]
Bedeaux, Dick [2 ,3 ]
Pagonabarraga, Ignacio [4 ]
Sengers, Jan V. [5 ]
Kjelstrup, Signe [2 ,3 ]
机构
[1] Univ Complutense, Dept Fis Aplicada 1, E-28040 Madrid, Spain
[2] Norwegian Univ Sci & Technol, Dept Chem, N-7491 Trondheim, Norway
[3] Delft Univ Technol, Dept Proc & Energy, NL-2628 CA Delft, Netherlands
[4] Univ Barcelona, Dept Fis Fonamental, E-08028 Barcelona, Spain
[5] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
来源
COMPTES RENDUS MECANIQUE | 2011年 / 339卷 / 05期
关键词
Mesoscopic nonequilibrium thermodynamics; Nonisothermal chemical reactions; Soret effect; Temperature profiles; Flux profiles; Thermal diffusion; CHEMICAL-REACTIONS; NONEQUILIBRIUM THERMODYNAMICS; HYDRODYNAMICS; TRANSPORT; DYNAMICS; SYSTEMS;
D O I
10.1016/j.crme.2011.03.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Recently, we have started to develop mesoscopic nonequilibrium thermodynamics for a reaction far from equilibrium in the presence of a temperature gradient, so that the interplay between the chemical reaction, diffusion and thermal diffusion can be described within the same theoretical framework. In this article we show that the spatial symmetry properties of the deterministic solution, which were so characteristic for conditions close to equilibrium, are no longer valid far from equilibrium. This is expected to have some conceptual consequences for the spatial spectrum of the fluctuations of temperature and concentrations around their local equilibrium values. (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:287 / 291
页数:5
相关论文
共 50 条
  • [1] Approximate solution to the diffusion-reaction problem with nonlinear kinetics in transient systems
    Reyes, Peralta E.
    Mendez, Regalado A.
    Escobar, Vidriales G.
    Rugerio, Gonzalez C. A.
    [J]. INNOVATIONS AND ADVANCED TECHNIQUES IN COMPUTER AND INFORMATION SCIENCES AND ENGINEERING, 2007, : 133 - 138
  • [2] LUMPING NONLINEAR KINETICS IN POROUS CATALYSTS - DIFFUSION-REACTION LUMPING STRATEGY
    OCONE, R
    ASTARITA, G
    [J]. AICHE JOURNAL, 1993, 39 (02) : 288 - 293
  • [3] Diffusion-reaction kinetics of microfluidic amperometric biosensors
    Li, Hui
    Lu, Yi
    Wong, Pak Kin
    [J]. LAB ON A CHIP, 2018, 18 (20) : 3086 - 3089
  • [4] Distributed nonlinear control of diffusion-reaction processes
    Dubljevic, S
    Christofides, PD
    Kevrekidis, IG
    [J]. PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 1341 - 1348
  • [5] Distributed nonlinear control of diffusion-reaction processes
    Dubljevic, S
    Christofides, PD
    Kevrekidis, IG
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2004, 14 (02) : 133 - 156
  • [6] Exact solutions of nonlinear diffusion-reaction equations
    Malik, A.
    Chand, F.
    Kumar, H.
    Mishra, S. C.
    [J]. INDIAN JOURNAL OF PHYSICS, 2012, 86 (02) : 129 - 136
  • [7] Exact solutions of nonlinear diffusion-reaction equations
    A. Malik
    F. Chand
    H. Kumar
    S. C. Mishra
    [J]. Indian Journal of Physics, 2012, 86 : 129 - 136
  • [8] Kinetics of periodic pattern formation in diffusion-reaction in a gel
    Kuo, CS
    Bansil, R
    Cabarcos, EL
    [J]. STATISTICAL MECHANICS IN PHYSICS AND BIOLOGY, 1997, 463 : 281 - 286
  • [9] MONOENZYMATIC MODEL MEMBRANES - DIFFUSION-REACTION KINETICS AND PHENOMENA
    THOMAS, D
    SELEGNY, E
    BROUN, G
    [J]. BIOCHIMIE, 1972, 54 (02) : 229 - &
  • [10] Diffusion-reaction modelling of DNA hybridization kinetics on biochips
    Pappaert, K
    Van Hummelen, P
    Vanderhoeven, J
    Baron, GV
    Desmet, G
    [J]. CHEMICAL ENGINEERING SCIENCE, 2003, 58 (21) : 4921 - 4930