Advection-diffusion, telegraph and advection-wave equations as superpositions of transport, diffusion and wave: a didactic study

被引:0
|
作者
Ortigoza Capetillo, G. M. [1 ]
机构
[1] Univ Veracruzana, Fac Matemat, Xalapa 91000, Veracruz, Mexico
来源
REVISTA MEXICANA DE FISICA E | 2007年 / 53卷 / 01期
关键词
physics education; advection; diffusion; wave equation;
D O I
暂无
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
In this work we present exact solutions of the advection-diffusion and the telegraph equations. These equations are considered as combinations of the basic equations: wave, heat and transport equation. Thus, in a natural way, a third combination that we called advection-wave is introduced. Although this equation is not so popular like the other combinations, it is a simple example of didactical value that allow us to explain physical and mathematical relations for the superposition of transport and wave motion.
引用
收藏
页码:48 / 51
页数:4
相关论文
共 50 条
  • [1] Traveling wave solutions of advection-diffusion equations with nonlinear diffusion
    Monsaingeon, L.
    Novikov, A.
    Roquejoffre, J. -M.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (04): : 705 - 735
  • [2] SOR Iterative Method with Wave Variable Transformation for Solving Advection-Diffusion Equations
    Ali, N. A. M.
    Rahman, R.
    Sulaiman, J.
    Ghazali, K.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS, ENGINEERING AND INDUSTRIAL APPLICATIONS 2018 (ICOMEIA 2018), 2018, 2013
  • [3] Nonlocal nonlinear advection-diffusion equations
    Peter Constantin
    [J]. Chinese Annals of Mathematics, Series B, 2017, 38 : 281 - 292
  • [4] Nonlocal Nonlinear Advection-Diffusion Equations
    Constantin, Peter
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 281 - 292
  • [5] ADVECTION-DIFFUSION EQUATIONS WITH DENSITY CONSTRAINTS
    Meszaros, Alpar Richard
    Santambrogio, Filippo
    [J]. ANALYSIS & PDE, 2016, 9 (03): : 615 - 644
  • [6] Accurate discretization of advection-diffusion equations
    Grima, R
    Newman, TJ
    [J]. PHYSICAL REVIEW E, 2004, 70 (03):
  • [7] Nonlocal Nonlinear Advection-Diffusion Equations
    Peter CONSTANTIN
    [J]. Chinese Annals of Mathematics,Series B, 2017, (01) : 281 - 292
  • [8] Analytical solutions of the space-time fractional Telegraph and advection-diffusion equations
    Tawfik, Ashraf M.
    Fichtner, Horst
    Schlickeiser, Reinhard
    Elhanbaly, A.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 491 : 810 - 819
  • [9] WAVE-EQUATION MODEL FOR SOLVING ADVECTION-DIFFUSION EQUATION
    WU, JK
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (16) : 2717 - 2733
  • [10] Analytical solutions for advection and advection-diffusion equations with spatially variable coefficients
    Zoppou, C
    Knight, JH
    [J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (02): : 144 - 148