Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress

被引:68
|
作者
Leuendorf, Jan Erik [1 ]
Frank, Manuel [1 ]
Schmuelling, Thomas [1 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Plant Sci DCPS, Inst Biol Appl Genet, Albrecht Thaer Weg 6, D-14195 Berlin, Germany
关键词
FREEZING TOLERANCE; MUTANTS REVEAL; GENE; ACCUMULATION; CHLOROPLAST; TRIMETHYLATION; EXPRESSION; PATHWAYS; PROTEINS; SYNTHASE;
D O I
10.1038/s41598-019-56797-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Because stress experiences are often recurrent plants have developed strategies to remember a first so-called priming stress to eventually respond more effectively to a second triggering stress. Here, we have studied the impact of discontinuous or sustained cold stress (4 degrees C) on in vitro grown Arabidopsis thaliana seedlings of different age and their ability to get primed and respond differently to a later triggering stress. Cold treatment of 7-d-old seedlings induced the expression of cold response genes but did not cause a significantly enhanced freezing resistance. The competence to increase the freezing resistance in response to cold was associated with the formation of true leaves. Discontinuous exposure to cold only during the night led to a stepwise modest increase in freezing tolerance provided that the intermittent phase at ambient temperature was less than 32h. Seedlings exposed to sustained cold treatment developed a higher freezing tolerance which was further increased in response to a triggering stress during three days after the priming treatment had ended indicating cold memory. Interestingly, in all scenarios the primed state was lost as soon as the freezing tolerance had reached the level of naive plants indicating that an effective memory was associated with an altered physiological state. Known mutants of the cold stress response (cbfs, erf105) and heat stress memory (fgt1) did not show an altered behaviour indicating that their roles do not extend to memory of cold stress in Arabidopsis seedlings.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress
    Jan Erik Leuendorf
    Manuel Frank
    Thomas Schmülling
    Scientific Reports, 10
  • [2] The role of raffinose in the cold acclimation response of Arabidopsis thaliana
    Zuther, E
    Büchel, K
    Hundertmark, M
    Stitt, M
    Hincha, DK
    Heyer, AG
    FEBS LETTERS, 2004, 576 (1-2): : 169 - 173
  • [3] COLD-ACCLIMATION IN ARABIDOPSIS-THALIANA
    GILMOUR, SJ
    HAJELA, RK
    THOMASHOW, MF
    PLANT PHYSIOLOGY, 1988, 87 (03) : 745 - 750
  • [4] Phloem transport in Arabidopsis thaliana seedlings in response to osmotic stress
    Su, TTJ
    Holbrook, NM
    Zwieniecki, MA
    So, PTC
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 585A - 585A
  • [5] Metabolic signatures of Arabidopsis thaliana abiotic stress responses elucidate patterns in stress priming, acclimation, and recovery
    Xu, Yuan
    Freund, Dana M.
    Hegeman, Adrian D.
    Cohen, Jerry D.
    STRESS BIOLOGY, 2022, 2 (01):
  • [6] Acclimation increases freezing stress response of Arabidopsis thaliana at proteome level
    Fanucchi, Francesca
    Alpi, Emanuele
    Olivieri, Stefano
    Cannistraci, Carlo V.
    Bachi, Angela
    Alpi, Amedeo
    Alessio, Massimo
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2012, 1824 (06): : 813 - 825
  • [7] Role of hydrogen peroxide in cold acclimation of Arabidopsis thaliana
    Otsubo, M
    Saito, A
    Yamada, R
    Inoue, S
    Tasaka, Y
    Wada, H
    PLANT AND CELL PHYSIOLOGY, 2002, 43 : S168 - S168
  • [8] Fitness Benefits and Costs of Cold Acclimation in Arabidopsis thaliana
    Zhen, Ying
    Dhakal, Preeti
    Ungerer, Mark C.
    AMERICAN NATURALIST, 2011, 178 (01): : 44 - 52
  • [9] Sucrose helps regulate cold acclimation of Arabidopsis thaliana
    Rekarte-Cowie, Iona
    Ebshish, Omar S.
    Mohamed, Khalifa S.
    Pearce, Roger S.
    JOURNAL OF EXPERIMENTAL BOTANY, 2008, 59 (15) : 4205 - 4217
  • [10] Identification of a metabolic bottleneck for cold acclimation in Arabidopsis thaliana
    Naegele, Thomas
    Stutz, Simon
    Hoermiller, Imke I.
    Heyer, Arnd G.
    PLANT JOURNAL, 2012, 72 (01): : 102 - 114