Curling probe measurement of a large-volume pulsed plasma with surface magnetic confinement

被引:7
|
作者
Pandey, A. [1 ]
Tashiro, H. [2 ]
Sakakibara, W. [2 ]
Nakamura, K. [1 ]
Sugai, H. [1 ]
机构
[1] Chubu Univ, Coll Engn, 1200 Matsumoto Cho, Kasugai, Aichi 4878501, Japan
[2] DOWA Thermotech Co Ltd, Mizuho Ku, 19-1 Ukishima Cho, Nagoya, Aichi 4670854, Japan
来源
PLASMA SOURCES SCIENCE & TECHNOLOGY | 2016年 / 25卷 / 06期
关键词
curling probe; electron density; pulse discharge; surface magnetic confinement; cathode sheath; ABSORPTION PROBE; ELECTRON-DENSITY; UNIFORMITY; RESONATOR; SILICON;
D O I
10.1088/0963-0252/25/6/065013
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A curling probe (CP) based on microwave resonance is applied to the measurement of electron density in a pulsed DC glow discharge under surface magnetic confinement (SMC) provided by a number of permanent magnets on a chamber wall. Owing to the SMC effects, a 1 m scale large-volume plasma is generated by a relatively low voltage (similar to 1 kV) at low pressure (similar to 1 Pa) in various gases (Ar, CH4, and C2H2). Temporal variation of the electron density is measured for pulse frequency f = 0.5-25 kHz for various discharge-on times (TON) with a high resolution time (similar to 0.2 mu s), using the on-point mode. In general, the electron density starts to increase at time t = 0 after turn-on of the discharge voltage, reaches peak density at t = TON, and then decreases after turn-off. The peak electron density is observed to increase with the pulse frequency f for constant TON owing to the residual plasma. This dependence is successfully formulated using a semi-empirical model. The spatio-temporal evolution of the cathode sheath in the pulsed discharge is revealed by a 1 m long movable CP. The measured thickness of the high-voltage cathode fall in a steady state coincides with the value of the so-called Child-Langmuir sheath.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] EXPERIMENTAL LARGE-VOLUME HEMODILUTION WITH PLASMA
    GADBOYS, HL
    LITWAK, RS
    KAHN, M
    KOCHWA, S
    BUERGER, WE
    CIRCULATION, 1965, 32 (4S2) : 92 - &
  • [2] LARGE-VOLUME CONVENTIONAL MAGNETIC SHIELDS
    COHEN, D
    REVUE DE PHYSIQUE APPLIQUEE, 1970, 5 (01): : 53 - &
  • [3] Volume/surface effects on electron energy and dissociation reactions in large-volume plasma reactors
    Kinoshita, K
    Noda, S
    Morishita, S
    Itabashi, N
    Okigawa, M
    Sekine, M
    Inoue, M
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1999, 17 (04): : 1520 - 1525
  • [4] Probe Diagnostics of Plasma Parameters in a Large-Volume Glow Discharge With Coaxial Gridded Hollow Electrodes
    Yuan, Chengxun
    Kudryavtsev, A. A.
    Saifutdinov, A. I.
    Sysoev, S. S.
    Tian, Ruihuan
    Yao, Jingfeng
    Zhou, Zhongxiang
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2017, 45 (12) : 3110 - 3113
  • [5] LARGE-VOLUME RADIOFREQUENCY PLASMA SOURCE USING A MAGNETIC LINE-CUSP FIELD
    YABE, E
    TAKAHASHI, K
    TAKAYAMA, K
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1994, 65 (04): : 1365 - 1367
  • [6] Curling probe measurement of electron density in pulse-modulated plasma
    Pandey, Anil
    Sakakibara, Wataru
    Matsuoka, Hiroyuki
    Nakamura, Keiji
    Sugai, Hideo
    APPLIED PHYSICS LETTERS, 2014, 104 (02)
  • [7] Relaxation of a low-temperature helium plasma produced by a pulsed electron beam in a large-volume chamber
    Kvitov, SV
    Lomakin, BN
    Solovev, VR
    Sunarchin, AA
    Tikhonov, MG
    Cherkasskii, NV
    PLASMA PHYSICS REPORTS, 1996, 22 (12) : 1032 - 1043
  • [8] ION-ACOUSTIC TURBULENCE IN A LARGE-VOLUME PLASMA
    KAWAI, Y
    HOLLENSTEIN, C
    GUYOT, M
    PHYSICS OF FLUIDS, 1978, 21 (06) : 970 - 974
  • [9] Plasma Maintenance Mechanisms in Large-Volume Hollow Anode
    N. V. Landl
    Yu. D. Korolev
    I. V. Lopatin
    O. V. Krysina
    O. B. Frants
    G. A. Argunov
    Russian Physics Journal, 2021, 63 : 1766 - 1772
  • [10] Plasma Maintenance Mechanisms in Large-Volume Hollow Anode
    Landl, N. V.
    Korolev, Yu. D.
    Lopatin, I. V.
    Krysina, O. V.
    Frants, O. B.
    Argunov, G. A.
    RUSSIAN PHYSICS JOURNAL, 2021, 63 (10) : 1766 - 1772