Lemurs Optimizer: A New Metaheuristic Algorithm for Global Optimization

被引:22
|
作者
Abasi, Ammar Kamal [1 ]
Makhadmeh, Sharif Naser [2 ]
Al-Betar, Mohammed Azmi [2 ]
Alomari, Osama Ahmad [3 ]
Awadallah, Mohammed A. [4 ,5 ]
Alyasseri, Zaid Abdi Alkareem [6 ,7 ,8 ]
Abu Doush, Iyad [9 ,10 ]
Elnagar, Ashraf [11 ]
Alkhammash, Eman H. [12 ]
Hadjouni, Myriam [13 ]
机构
[1] Mohamed bin Zayed Univ Artificial Intelligence MB, Machine Learning Dept, POB 54115, Abu Dhabi, U Arab Emirates
[2] Ajman Univ, Coll Engn & Informat Technol, Artificial Intelligence Res Ctr AIRC, POB 346, Ajman, U Arab Emirates
[3] Univ Sharjah, MLALP Res Grp, POB 27272, Sharjah, U Arab Emirates
[4] Al Aqsa Univ, Dept Comp Sci, POB 4051, Gaza, Palestine
[5] Ajman Univ, Artificial Intelligence Res Ctr AIRC, POB 346, Ajman, U Arab Emirates
[6] Univ Kufa, Fac Engn, ECE Dept, POB 21, Najaf, Iraq
[7] Univ Kufa, Informat Technol Res & Dev Ctr ITRDC, Najaf 54003, Iraq
[8] Imam Jaafar Al Sadiq Univ, Coll Adm & Financial Sci, Dept Business Adm, POB 9102, Baghdad, Iraq
[9] Yarmouk Univ, Comp Sci Dept, POB 566, Irbid, Jordan
[10] Amer Univ Kuwait, Coll Engn & Appl Sci, Dept Comp, POB 3323, Salmiya, Kuwait
[11] Univ Sharjah, Dept Comp Sci, POB 27272, Sharjah, U Arab Emirates
[12] Taif Univ, Coll Comp & Informat Technol, Dept Comp Sci, POB 11099, Taif 21944, Saudi Arabia
[13] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, POB 84428, Riyadh 11671, Saudi Arabia
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 19期
关键词
swarm intelligence; metaheuristic; optimization; stochastic optimization; benchmark; LO; GREY WOLF OPTIMIZER; KRILL HERD;
D O I
10.3390/app121910057
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Lemur Optimizer (LO) is a novel nature-inspired algorithm we propose in this paper. This algorithm's primary inspirations are based on two pillars of lemur behavior: leap up and dance hub. These two principles are mathematically modeled in the optimization context to handle local search, exploitation, and exploration search concepts. The LO is first benchmarked on twenty-three standard optimization functions. Additionally, the LO is used to solve three real-world problems to evaluate its performance and effectiveness. In this direction, LO is compared to six well-known algorithms: Salp Swarm Algorithm (SSA), Artificial Bee Colony (ABC), Sine Cosine Algorithm (SCA), Bat Algorithm (BA), Flower Pollination Algorithm (FPA), and JAYA algorithm. The findings show that the proposed algorithm outperforms these algorithms in fourteen standard optimization functions and proves the LO's robust performance in managing its exploration and exploitation capabilities, which significantly leads LO towards the global optimum. The real-world experimental findings demonstrate how LO may tackle such challenges competitively.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] The Archerfish Hunting Optimizer: A Novel Metaheuristic Algorithm for Global Optimization
    Zitouni, Farouq
    Harous, Saad
    Belkeram, Abdelghani
    Hammou, Lokman Elhakim Baba
    [J]. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (02) : 2513 - 2553
  • [2] The Archerfish Hunting Optimizer: A Novel Metaheuristic Algorithm for Global Optimization
    Farouq Zitouni
    Saad Harous
    Abdelghani Belkeram
    Lokman Elhakim Baba Hammou
    [J]. Arabian Journal for Science and Engineering, 2022, 47 : 2513 - 2553
  • [3] Search in forest optimizer: a bioinspired metaheuristic algorithm for global optimization problems
    Ahwazian, Amin
    Amindoust, Atefeh
    Tavakkoli-Moghaddam, Reza
    Nikbakht, Mehrdad
    [J]. SOFT COMPUTING, 2022, 26 (05) : 2325 - 2356
  • [4] Search in forest optimizer: a bioinspired metaheuristic algorithm for global optimization problems
    Amin Ahwazian
    Atefeh Amindoust
    Reza Tavakkoli-Moghaddam
    Mehrdad Nikbakht
    [J]. Soft Computing, 2022, 26 : 2325 - 2356
  • [5] Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization
    Azizi, Mahdi
    Aickelin, Uwe
    Khorshidi, Hadi A.
    Shishehgarkhaneh, Milad Baghalzadeh
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [6] Energy valley optimizer: a novel metaheuristic algorithm for global and engineering optimization
    Mahdi Azizi
    Uwe Aickelin
    Hadi A. Khorshidi
    Milad Baghalzadeh Shishehgarkhaneh
    [J]. Scientific Reports, 13 (1)
  • [7] Gradient-based optimizer: A new metaheuristic optimization algorithm
    Ahmadianfar, Iman
    Bozorg-Haddad, Omid
    Chu, Xuefeng
    [J]. INFORMATION SCIENCES, 2020, 540 : 131 - 159
  • [8] Mountain Gazelle Optimizer: A new Nature-inspired Metaheuristic Algorithm for Global Optimization Problems
    Abdollahzadeh, Benyamin
    Gharehchopogh, Farhad Soleimanian
    Khodadadi, Nima
    Mirjalili, Seyedali
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2022, 174
  • [9] Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems
    Abdollahzadeh, Benyamin
    Gharehchopogh, Farhad Soleimanian
    Mirjalili, Seyedali
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (10) : 5887 - 5958
  • [10] Running city game optimizer: a game-based metaheuristic optimization algorithm for global optimization
    Ma, Bing
    Hu, Yongtao
    Lu, Pengmin
    Liu, Yonggang
    [J]. JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2023, 10 (01) : 65 - 107