ALSTM: An attention-based long short-term memory framework for knowledge base reasoning

被引:19
|
作者
Wang, Qi [1 ]
Hao, Yongsheng [2 ]
机构
[1] Fudan Univ, Sch Comp Sci, Software Engn, Shanghai, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Network Ctr, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge base; LSTM; Attention; Memory; Logical rule; Deep learning; DEEP NEURAL-NETWORKS; GAME; GO;
D O I
10.1016/j.neucom.2020.02.065
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge Graphs (KGs) have been applied to various application scenarios including Web searching, Q&A, recommendation system, natural language processing and so on. However, the vast majority of Knowledge Bases (KBs) are incomplete, necessitating a demand for KB completion (KBC). Methods of KBC used in the mainstream current knowledge base include the latent factor model, the random walk model and recent popular methods based on reinforcement learning, which performs well in their respective areas of expertise. Recurrent neural network (RNN) and its variants model temporal data by remembering information for long periods, however, whether they also have the ability to use the information they have already remembered to achieve complex reasoning in the knowledge graph. In this paper, we produce a novel framework (ALSTM) based on the Attention mechanism and Long Short-Term Memory (LSTM), which associates structure learning with parameter learning of first-order logical rules in an end-to-end differentiable neural networks model. In this framework, we designed a memory system and employed a multi-head dot product attention (MHDPA) to interact and update the memories embedded in the memory system for reasoning purposes. This is also consistent with the process of human cognition and reasoning, looking for enlightenment for the future in historical memory. In addition, we explored the use of inductive bias in deep learning to facilitate learning of entities, relations, and rules. Experiments establish the efficiency and effectiveness of our model and show that our method achieves better performance in tasks which include fact prediction and link prediction than baseline models on several benchmark datasets such as WN18RR, FB15K-237 and NELL-995. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:342 / 351
页数:10
相关论文
共 50 条
  • [1] Hybrid attention-based Long Short-Term Memory network for sarcasm identification
    Pandey, Rajnish
    Kumar, Abhinav
    Singh, Jyoti Prakash
    Tripathi, Sudhakar
    [J]. APPLIED SOFT COMPUTING, 2021, 106
  • [2] Attention-based long short-term memory network temperature prediction model
    Kun, Xiao
    Shan, Tian
    Yi, Tan
    Chao, Chen
    [J]. PROCEEDINGS OF 2021 7TH INTERNATIONAL CONFERENCE ON CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO), 2021, : 278 - 281
  • [3] Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification
    Zhou, Peng
    Shi, Wei
    Tian, Jun
    Qi, Zhenyu
    Li, Bingchen
    Hao, Hongwei
    Xu, Bo
    [J]. PROCEEDINGS OF THE 54TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2016), VOL 2, 2016, : 207 - 212
  • [4] Influenza surveillance with Baidu index and attention-based long short-term memory model
    Dai, Shangfang
    Han, Litao
    [J]. PLOS ONE, 2023, 18 (01):
  • [5] Image Captioning with Bidirectional Semantic Attention-Based Guiding of Long Short-Term Memory
    Cao, Pengfei
    Yang, Zhongyi
    Sun, Liang
    Liang, Yanchun
    Yang, Mary Qu
    Guan, Renchu
    [J]. NEURAL PROCESSING LETTERS, 2019, 50 (01) : 103 - 119
  • [6] Can Eruptions Be Predicted? Short-Term Prediction of Volcanic Eruptions via Attention-Based Long Short-Term Memory
    Le, Hiep, V
    Murata, Tsuyoshi
    Iguchi, Masato
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13320 - 13325
  • [7] Image Captioning with Bidirectional Semantic Attention-Based Guiding of Long Short-Term Memory
    Pengfei Cao
    Zhongyi Yang
    Liang Sun
    Yanchun Liang
    Mary Qu Yang
    Renchu Guan
    [J]. Neural Processing Letters, 2019, 50 : 103 - 119
  • [8] Short-Term Traffic Congestion Forecasting Using Attention-Based Long Short-Term Memory Recurrent Neural Network
    Zhang, Tianlin
    Liu, Ying
    Cui, Zhenyu
    Leng, Jiaxu
    Xie, Weihong
    Zhang, Liang
    [J]. COMPUTATIONAL SCIENCE - ICCS 2019, PT III, 2019, 11538 : 304 - 314
  • [9] Attention-based Bidirectional Long Short-Term Memory Networks for Relation Classification Using Knowledge Distillation from BERT
    Wang, Zihan
    Yang, Bo
    [J]. 2020 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2020, : 562 - 568
  • [10] Forecasting Teleconsultation Demand with an Ensemble Attention-Based Bidirectional Long Short-Term Memory Model
    Chen, Wenjia
    Yu, Lean
    Li, Jinlin
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 821 - 833