共 50 条
Genomic variation at the tips of the adaptive radiation of Darwin's finches
被引:78
|作者:
Chaves, Jaime A.
[1
,2
]
Cooper, Elizabeth A.
[1
,3
]
Hendry, Andrew P.
[4
]
Podos, Jeffrey
[5
]
De Leon, Luis F.
[6
,7
]
Raeymaekers, Joost A. M.
[8
,9
]
Macmillan, W. Owen
[10
]
Uy, J. Albert C.
[1
]
机构:
[1] Univ Miami, Dept Biol, Coral Gables, FL 33146 USA
[2] USFQ, Colegio Ciencias Biol & Ambientales & Extens Gala, Campus Cumbaya, Quito, Ecuador
[3] Clemson Univ, Dept Biochem & Genet, Clemson, SC 29634 USA
[4] McGill Univ, Dept Biol, Redpath Museum, Montreal, PQ, Canada
[5] Univ Massachusetts, Dept Biol, Amherst, MA 01003 USA
[6] Inst Invest Cient & Serv Alta Tecnol INDICASAT AI, Ctr Biodiversidad & Descubrimiento Drogas, Panama City, Panama
[7] Univ Massachusetts, Dept Biol, 100 Morrissey Blvd, Boston, MA 02125 USA
[8] Univ Leuven, Lab Biodivers & Evolutionary Genom, B-3000 Leuven, Belgium
[9] Norwegian Univ Sci & Technol, Dept Biol, Ctr Biodivers Dynam, N-7491 Trondheim, Norway
[10] Smithsonian Trop Res Inst, Panama City, Panama
关键词:
adaptive radiation;
beak size;
Darwin's finches;
genomic regions;
RAD-seq;
WIDE ASSOCIATION;
GENE FLOW;
HAPLOTYPE RECONSTRUCTION;
REPRODUCTIVE ISOLATION;
NATURAL-SELECTION;
SYMPATRIC MORPHS;
BEAK SHAPE;
DIVERGENCE;
EVOLUTION;
POPULATION;
D O I:
10.1111/mec.13743
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Adaptive radiation unfolds as selection acts on the genetic variation underlying functional traits. The nature of this variation can be revealed by studying the tips of an ongoing adaptive radiation. We studied genomic variation at the tips of the Darwin's finch radiation; specifically focusing on polymorphism within, and variation among, three sympatric species of the genus Geospiza. Using restriction site-associated DNA (RAD-seq), we characterized 32 569 single-nucleotide polymorphisms (SNPs), from which 11 outlier SNPs for beak and body size were uncovered by a genomewide association study (GWAS). Principal component analysis revealed that these 11 SNPs formed four statistically linked groups. Stepwise regression then revealed that the first PC score, which included 6 of the 11 top SNPs, explained over 80% of the variation in beak size, suggesting that selection on these traits influences multiple correlated loci. The two SNPs most strongly associated with beak size were near genes associated with beak morphology across deeper branches of the radiation: delta-like 1 homologue (DLK1) and high-mobility group AT-hook 2 (HMGA2). Our results suggest that (i) key adaptive traits are associated with a small fraction of the genome (11 of 32 569 SNPs), (ii) SNPs linked to the candidate genes are dispersed throughout the genome (on several chromosomes), and (iii) micro-and macro-evolutionary variation (roots and tips of the radiation) involve some shared and some unique genomic regions.
引用
收藏
页码:5282 / 5295
页数:14
相关论文