An efficient numerical method for the vehicle-bridge nonlinear dynamic interaction

被引:0
|
作者
Jin, Zhibin [1 ]
Li, Xiaozhen [1 ]
Liu, Dejun [1 ]
Pei, Shiling [2 ]
机构
[1] Southwest Jiaotong Univ, Dept Bridge Engn, Chengdu 610031, Peoples R China
[2] Colorado Sch Mines, Dept Civil & Environm Engn, Golden, CO 80401 USA
关键词
Vehicle-bridge; Dynamic interaction; Wheel-rail contact; Mode superposition; SYSTEMS;
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study aims at providing an efficient and accurate method for the time history simulation of the vehicle-bridge dynamic interaction. With the geometric nonlinearity in wheel-rail contact fully considered, a simplified assumption was adopted that vertical wheel-load fluctuation has no influence on the lateral wheel-rail interaction. The wheel-rail creep forces are computed using Kalker's theory, and the normal forces are solved from wheel-set vertical and torsional equilibrium equations. The method limited the number of nonlinear parameters for each wheel-set to five. In addition, mode superposition method is adopted for bridge responses to minimize the overall system DOFs. The virtual work principle method is used to derive the system matrix. Numerical examples show that the present method gives results comparable in terms of accuracy to that using a more complex model. But it is at least 50 times faster than the detailed model. The efficiency and accuracy of the proposed method will make it suitable in the reliability-based vehicle-bridge interaction analyses.
引用
收藏
页码:1341 / 1346
页数:6
相关论文
共 50 条
  • [1] VEHICLE-BRIDGE INTERACTION ANALYSIS BY DYNAMIC CONDENSATION METHOD
    YANG, YB
    LIN, BH
    [J]. JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1995, 121 (11): : 1636 - 1643
  • [2] Vehicle-bridge interaction analysis by dynamic condensation method - Discussion
    Laura, PAA
    Rossi, RE
    [J]. JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1997, 123 (04): : 532 - 533
  • [3] A Dynamic Partitioning Method to solve the vehicle-bridge interaction problem
    Stoura, Charikleia D.
    Paraskevopoulos, Elias
    Dimitrakopoulos, Elias G.
    Natsiavas, Sotirios
    [J]. COMPUTERS & STRUCTURES, 2021, 251
  • [4] Vehicle-bridge interaction analysis by dynamic condensation method - Closure
    Yang, YB
    Lin, BH
    [J]. JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1997, 123 (04): : 533 - 533
  • [5] Nonlinear dynamic analysis of a parametrically excited vehicle-bridge interaction system
    Zhou, Shihua
    Song, Guiqiu
    Ren, Zhaohui
    Wen, Bangchun
    [J]. NONLINEAR DYNAMICS, 2017, 88 (03) : 2139 - 2159
  • [6] Reliability evaluation of vehicle-bridge dynamic interaction
    Xiang, Tianyu
    Zhao, Renda
    Xu, Tengfei
    [J]. JOURNAL OF STRUCTURAL ENGINEERING, 2007, 133 (08) : 1092 - 1099
  • [7] Vehicle-bridge interaction element for dynamic analysis
    Yang, YB
    Yau, JD
    [J]. JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1997, 123 (11): : 1512 - 1518
  • [8] Numerical formulation based on moving mesh method for vehicle-bridge interaction
    Greco, Fabrizio
    Lonetti, Paolo
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2018, 121 : 75 - 83
  • [9] VEHICLE-BRIDGE INTERACTION
    DAHLBERG, T
    [J]. VEHICLE SYSTEM DYNAMICS, 1984, 13 (04) : 187 - 206
  • [10] Application of the Newmark numerical method with contact algorithm to the solution of the vehicle-bridge interaction
    Kortis, Jan
    Daniel, Lubos
    [J]. XXV POLISH - RUSSIAN - SLOVAK SEMINAR -THEORETICAL FOUNDATION OF CIVIL ENGINEERING, 2016, 153 : 298 - 303