Amplitude estimation of a sinusoid buried in heavy noise using stochastic resonance

被引:0
|
作者
Dasgupta, S [1 ]
Sarkar, S [1 ]
Nair, J [1 ]
机构
[1] Indian Inst Technol, Kharagpur 721302, W Bengal, India
关键词
expected power; maximum likelihood estimate; noise reconstruction; quantizer; stochastic resonance; transition probability;
D O I
10.1109/INDICO.2004.1497702
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper Investigates four methods to estimate the amplitude of a sinusold buried in noise, using the phenomenon of stochastic resonance (SR) to obtain the best estimate. SR is a cooperative effect in which the power in the broadband part of the spectrum is fed in to the output power of the signal frequency. We use a 3-level quantizer In our experiments to quantize the sinsoid buried In noise after variance-controlled AWGN is added to It. We estimate the amplitude at the optimum variance; which is obtained from the experimentally obtained SNR data.
引用
收藏
页码:41 / 46
页数:6
相关论文
共 50 条
  • [1] Estimation of the amplitude of sinusoid in white noise
    Liu, Guidong
    Yu, Wensheng
    2006 CHINESE CONTROL CONFERENCE, VOLS 1-5, 2006, : 1743 - +
  • [2] Maximum likelihood parameter estimation of a sinusoid with random amplitude in white noise
    Sakai, H
    Hayashi, T
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 3545 - 3546
  • [3] Detecting signals buried in noise via nanowire transistors using stochastic resonance
    Nishiguchi, Katsuhiko
    Fujiwara, Akira
    APPLIED PHYSICS LETTERS, 2012, 101 (19)
  • [4] On sinusoid estimation in nonstationary noise
    Frazho, AE
    Yagci, B
    Sumali, H
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) : 777 - 781
  • [5] THE DISTRIBUTION OF THE AMPLITUDE AND CONTINUOUS PHASE OF A SINUSOID IN NOISE
    CAMPBELL, LL
    WITTKE, PH
    SWANSON, GD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (06) : 1388 - 1395
  • [6] Distribution of the amplitude and continuous phase of a sinusoid in noise
    Campbell, L.Lorne
    Wittke, Paul H.
    Swanson, Glenn D.
    IEEE Transactions on Information Theory, 1988, v (0n) : 1388 - 1395
  • [7] Effective stochastic resonance under noise of heterogeneous amplitude
    Kawai, Ryosuke
    Torigoe, Shogo
    Yoshida, Kazuhiro
    Awazu, Akinori
    Nishimori, Hiraku
    PHYSICAL REVIEW E, 2010, 82 (05):
  • [9] Optimum stochastic resonance detector of weak sinusoid signals in additive white Gaussian noise
    Ye, QH
    Huang, HN
    Zhang, CH
    2004 7TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS 1-3, 2004, : 77 - 80
  • [10] On the Estimation of the Parameters of a Real Sinusoid in Noise
    Ye, Shanglin
    Sun, Jiadong
    Aboutanios, Elias
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (05) : 638 - 642