Prediction of postoperative outcomes using intraoperative hemodynamic monitoring data

被引:12
|
作者
Prasad, Varesh [1 ,2 ]
Guerrisi, Maria [3 ]
Dauri, Mario [4 ,5 ]
Coniglione, Filadelfo [4 ,5 ,6 ]
Tisone, Giuseppe [7 ]
De Carolis, Elisa [5 ]
Cillis, Annagrazia [5 ]
Canichella, Antonio [3 ]
Toschi, Nicola [3 ,8 ,9 ]
Heldt, Thomas [2 ,10 ]
机构
[1] MIT, Harvard MIT Hlth Sci & Technol Program, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Inst Med Engn & Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] Univ Roma Tor Vergata, Med Phys Sect, Dept Biomed & Prevent, Rome, Italy
[4] Univ Roma Tor Vergata, Dept Clin Sci & Translat Med, Rome, Italy
[5] Univ Hosp Tor Vergata, Dept Emergency & Crit Care Med Pain Med & Anaesth, Rome, Italy
[6] Univ Our Lady Good Counsel, Tirana, Albania
[7] Univ Roma Tor Vergata, Dept Expt Med & Surg, Rome, Italy
[8] Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA USA
[9] Harvard Med Sch, Boston, MA USA
[10] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
CENTRAL VENOUS-PRESSURE; STAGE LIVER-DISEASE; ACUTE-RENAL-FAILURE; TRANSPLANTATION; MANAGEMENT; MORBIDITY; MORTALITY; SURVIVAL; PATIENT; MODEL;
D O I
10.1038/s41598-017-16233-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Major surgeries can result in high rates of adverse postoperative events. Reliable prediction of which patient might be at risk for such events may help guide peri- and postoperative care. We show how archiving and mining of intraoperative hemodynamic data in orthotopic liver transplantation (OLT) can aid in the prediction of postoperative 180-day mortality and acute renal failure (ARF), improving upon predictions that rely on preoperative information only. From 101 patient records, we extracted 15 preoperative features from clinical records and 41 features from intraoperative hemodynamic signals. We used logistic regression with leave-one-out cross-validation to predict outcomes, and incorporated methods to limit potential model instabilities from feature multicollinearity. Using only preoperative features, mortality prediction achieved an area under the receiver operating characteristic curve (AUC) of 0.53 (95% CI: 0.44-0.78). By using intraoperative features, performance improved significantly to 0.82 (95% CI: 0.56-0.91, P = 0.001). Similarly, including intraoperative features (AUC = 0.82; 95% CI: 0.66-0.94) in ARF prediction improved performance over preoperative features (AUC = 0.72; 95% CI: 0.50-0.85), though not significantly (P = 0.32). We conclude that inclusion of intraoperative hemodynamic features significantly improves prediction of postoperative events in OLT. Features strongly associated with occurrence of both outcomes included greater intraoperative central venous pressure and greater transfusion volumes.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Prediction of postoperative outcomes using intraoperative hemodynamic monitoring data
    Varesh Prasad
    Maria Guerrisi
    Mario Dauri
    Filadelfo Coniglione
    Giuseppe Tisone
    Elisa De Carolis
    Annagrazia Cillis
    Antonio Canichella
    Nicola Toschi
    Thomas Heldt
    [J]. Scientific Reports, 7
  • [2] Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data
    Kwon, Doyun
    Jung, Young Mi
    Lee, Hyung-Chul
    Kim, Tae Kyong
    Kim, Kwangsoo
    Lee, Garam
    Kim, Dokyoon
    Lee, Seung-Bo
    Lee, Seung Mi
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 156
  • [3] Real-time prediction of massive transfusion during cesarean section using intraoperative hemodynamic monitoring data
    Kwon, Do Yun
    Jung, Young Mi
    Lee, Seung-Bo
    Kim, Taekyoung
    Kim, Kwangsoo
    Lee, Garam
    Bae, Jihye
    Lee, Jeesun
    Park, Chan-Wook
    Park, Joong Shin
    Jun, Jong Kwan
    Kim, Dokyoon
    Lee, Hyung-Chul
    [J]. AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2023, 228 (01) : S150 - S151
  • [4] Development and Validation of a Prediction Model for Need for Massive Transfusion During Surgery Using Intraoperative Hemodynamic Monitoring Data
    Lee, Seung Mi
    Lee, Garam
    Kim, Tae Kyong
    Le, Trang
    Hao, Jie
    Jung, Young Mi
    Park, Chan-Wook
    Park, Joong Shin
    Jun, Jong Kwan
    Lee, Hyung-Chul
    Kim, Dokyoon
    [J]. JAMA NETWORK OPEN, 2022, 5 (12) : E2246637
  • [5] Intraoperative hemodynamic monitoring using transesophageal echocardiography in orthopedic surgery
    Carolina Cabrera Sch, Maria
    Vega S, Raul
    Diaz Valdes A, Victoria
    Bermudez B, Ernesto
    Santelices C, Emilio
    [J]. REVISTA MEDICA DE CHILE, 2008, 136 (09) : 1127 - 1133
  • [6] Postoperative hemodynamic instability and monitoring
    Minokadeh, Anushirvan
    Pinsky, Michael R.
    [J]. CURRENT OPINION IN CRITICAL CARE, 2016, 22 (04) : 393 - 400
  • [7] INTRAOPERATIVE AND POSTOPERATIVE MONITORING OF INFANTS
    TALBERT, JL
    [J]. SURGICAL CLINICS OF NORTH AMERICA, 1970, 50 (04) : 787 - &
  • [8] MORBIDITY PREDICTION USING PREOPERATIVE AND INTRAOPERATIVE DATA
    SCHNEIDER, AJL
    KNOKE, JD
    ZOLLINGER, RM
    MCLAREN, CE
    BAETZ, WR
    [J]. ANESTHESIOLOGY, 1979, 51 (01) : 4 - 10
  • [9] Florida Scoring System for Prediction of Intraoperative Difficulty and Postoperative Outcomes for Robotic Pancreaticoduodenectomy
    Ross, Sharona B.
    Dugan, Michelle M.
    Sucandy, Iswanto
    Saravanan, Sneha
    Rosemurgy, Alexander S., II
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF SURGEONS, 2023, 237 (05) : S289 - S289
  • [10] POSTOPERATIVE HEMODYNAMIC AND THERMOREGULATORY CONSEQUENCES OF INTRAOPERATIVE CORE HYPOTHERMIA
    KURZ, A
    SESSLER, DI
    NARZT, E
    BEKAR, A
    LENHARDT, R
    HEUMER, G
    LACKNER, F
    [J]. JOURNAL OF CLINICAL ANESTHESIA, 1995, 7 (05) : 359 - 366