Strong Uniform Convergence Rates of Wavelet Density Estimators with Size-Biased Data

被引:1
|
作者
Guo, Huijun [1 ]
Kou, Junke [1 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Computat Sci, Guilin 541004, Guangxi, Peoples R China
关键词
CONSISTENCY;
D O I
10.1155/2019/7102346
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers the strong uniform convergence of multivariate density estimators in Besov space Bp,qs(Rd) based on size-biased data. We provide convergence rates of wavelet estimators when the parametric is known or unknown, respectively. It turns out that the convergence rates coincide with that of Gine and Nickl's (Uniform Limit Theorems for Wavelet Density Estimators, Ann. Probab., 37(4), 1605-1646, 2009), when the dimension d=1, p=q=, and omega(y) 1.
引用
收藏
页数:6
相关论文
共 50 条