Identification of herbarium specimens: a case study with Piperaceae Giseke family

被引:0
|
作者
Kajihara, Alexandre Yuji [1 ]
Bertolini, Diego [1 ]
Schwerz, Andre Luis [1 ]
机构
[1] Univ Tecnol Fed Parana, Campo Mourao, Parana, Brazil
关键词
Machine Learning; identification support; herbarium specimens; Piperaceae;
D O I
10.1109/IWSSIP55020.2022.9854444
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Although millions of herbarium specimens have been recently digitized, many of them have not yet been properly identified or reviewed. The main reason is that the classification process is manual, slow, and error-prone. Machine Learning techniques are promising alternatives for supporting herbarium plants identification. This paper evaluates feature extraction techniques and classification algorithms to identify herbarium specimens of the Piperaceae Giseke family at the genus level. For the evaluation, we extracted a balanced subset of pre-processed images from the five genera of the Piperaceae family (Manekia, Ottonia, Peperomia, Piper, and Pothomorphe) from the speciesLink repository. Our experiments point to potential support in identifying of herbarium images of the Piperaceae family, mainly for the genera Manekia, Peperomia and Ottonia. The best accuracy was 80.53% achieved by combining MobileNet-V2 and the SVM classifier.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Going deeper in the automated identification of Herbarium specimens
    Jose Carranza-Rojas
    Herve Goeau
    Pierre Bonnet
    Erick Mata-Montero
    Alexis Joly
    BMC Evolutionary Biology, 17
  • [2] Going deeper in the automated identification of Herbarium specimens
    Carranza-Rojas, Jose
    Goeau, Herve
    Bonnet, Pierre
    Mata-Montero, Erick
    Joly, Alexis
    BMC EVOLUTIONARY BIOLOGY, 2017, 17 : 1 - 14
  • [3] Development of a system for the automated identification of herbarium specimens with high accuracy
    Shirai, Masato
    Takano, Atsuko
    Kurosawa, Takahide
    Inoue, Masahito
    Tagane, Shuichiro
    Tanimoto, Tomoya
    Koganeyama, Tohru
    Sato, Hirayuki
    Terasawa, Tomohiko
    Horie, Takehito
    Mandai, Isao
    Akihiro, Takashi
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] An algorithm competition for automatic species identification from herbarium specimens
    Little, Damon P.
    Tulig, Melissa
    Tan, Kiat Chuan
    Liu, Yulong
    Belongie, Serge
    Kaeser-Chen, Christine
    Michelangeli, Fabian A.
    Panesar, Kiran
    Guha, R. V.
    Ambrose, Barbara A.
    APPLICATIONS IN PLANT SCIENCES, 2020, 8 (06):
  • [5] Development of a system for the automated identification of herbarium specimens with high accuracy
    Masato Shirai
    Atsuko Takano
    Takahide Kurosawa
    Masahito Inoue
    Shuichiro Tagane
    Tomoya Tanimoto
    Tohru Koganeyama
    Hirayuki Sato
    Tomohiko Terasawa
    Takehito Horie
    Isao Mandai
    Takashi Akihiro
    Scientific Reports, 12
  • [6] The portuguese specimens of the family Parmeliaceae (lichenized ascomycetes) in the PO herbarium (Oporto, Portugal)
    Paz-Bermúdez, G
    Carballal, R
    NOVA HEDWIGIA, 2005, 81 (1-2) : 205 - 228
  • [7] Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification
    Unger, Jakob
    Merhof, Dorit
    Renner, Susanne
    BMC EVOLUTIONARY BIOLOGY, 2016, 16
  • [8] Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification
    Jakob Unger
    Dorit Merhof
    Susanne Renner
    BMC Evolutionary Biology, 16
  • [9] A machine learning approach for cross-domain plant identification using herbarium specimens
    Chulif, Sophia
    Lee, Sue Han
    Chang, Yang Loong
    Chai, Kok Chin
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (08): : 5963 - 5985
  • [10] A machine learning approach for cross-domain plant identification using herbarium specimens
    Sophia Chulif
    Sue Han Lee
    Yang Loong Chang
    Kok Chin Chai
    Neural Computing and Applications, 2023, 35 : 5963 - 5985