CALIBRATION AND MULTIPLE ROBUSTNESS WHEN DATA ARE MISSING NOT AT RANDOM

被引:9
|
作者
Han, Peisong [1 ]
机构
[1] Univ Michigan, Dept Biostat, Sch Publ Hlth, Ann Arbor, MI 48109 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Calibration; empirical likelihood; missing not at random (MNAR); multiple robustness; nonignorable nonresponse; EMPIRICAL-LIKELIHOOD; SEMIPARAMETRIC REGRESSION; AUXILIARY INFORMATION; INFERENCE; ESTIMATORS; IMPUTATION; NONRESPONSE; EFFICIENT;
D O I
10.5705/ss.202015.0408
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In missing data analysis, multiple robustness is a desirable property resulting from the calibration technique. A multiply robust estimator is consistent if any one of the multiple data distribution models and missingness mechanism models is correctly specified. So far in the literature, multiple robustness has only been established when data are missing at random (MAR). We study how to carry out calibration to construct a multiply robust estimator when data are missing not at random (MNAR). With multiple models available, where each model consists of two components, one for data distribution for complete cases and one for missingness mechanism, our proposed estimator is consistent if any one pair of models are correctly specified.
引用
收藏
页码:1725 / 1740
页数:16
相关论文
共 50 条
  • [1] Auxiliary Variables in Multiple Imputation When Data Are Missing Not at Random
    Mustillo, Sarah
    Kwon, Soyoung
    [J]. JOURNAL OF MATHEMATICAL SOCIOLOGY, 2015, 39 (02): : 73 - 91
  • [2] Sensitivity Analysis of Multiple Informant Models When Data Are Not Missing at Random
    Blozis, Shelley A.
    Ge, Xiaojia
    Xu, Shu
    Natsuaki, Misaki N.
    Shaw, Daniel S.
    Neiderhiser, Jenae M.
    Scaramella, Laura V.
    Leve, Leslie D.
    Reiss, David
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2013, 20 (02) : 283 - 298
  • [3] Multiple imputation of ordinal missing not at random data
    Hammon, Angelina
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2023, 107 (04) : 671 - 692
  • [4] Multiple imputation of ordinal missing not at random data
    Angelina Hammon
    [J]. AStA Advances in Statistical Analysis, 2023, 107 : 671 - 692
  • [5] Inference for partial correlation when data are missing not at random
    Gorbach, Tetiana
    de Luna, Xavier
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 141 : 82 - 89
  • [6] Sensitivity Analysis When Data Are Missing Not-at-random
    Resseguier, Noemie
    Giorgi, Roch
    Paoletti, Xavier
    [J]. EPIDEMIOLOGY, 2011, 22 (02) : 282 - 283
  • [7] Calibration estimation of semiparametric copula models with data missing at random
    Hamori, Shigeyuki
    Motegi, Kaiji
    Zhang, Zheng
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 173 : 85 - 109
  • [8] Robust Optimal Design When Missing Data Happen at Random
    Rui Hu
    Ion Bica
    Zhichun Zhai
    [J]. Journal of Statistical Theory and Practice, 2023, 17
  • [9] A Model Validation Procedure when Covariate Data are Missing at Random
    Jin, Lei
    Wang, Suojin
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2010, 37 (03) : 403 - 421
  • [10] Likelihood based frequentist inference when data are missing at random
    Kenward, MG
    Molenberghs, G
    [J]. STATISTICAL SCIENCE, 1998, 13 (03) : 236 - 247