共 2 条
Karrikins Identified in Biochars Indicate Post-Fire Chemical Cues Can Influence Community Diversity and Plant Development
被引:58
|作者:
Kochanek, Jitka
[1
]
Long, Rowena L.
[2
]
Lisle, Allan T.
[3
]
Flematti, Gavin R.
[2
]
机构:
[1] Univ Queensland, Sch Agr & Food Sci, Brisbane, Qld, Australia
[2] Univ Western Australia, Sch Chem & Biochem, Crawley, WA, Australia
[3] Univ Queensland, Sch Agr & Food Sci, Gatton, Qld, Australia
来源:
基金:
澳大利亚研究理事会;
关键词:
SEED-GERMINATION;
GROWTH REGULATORS;
SMOKE;
SOIL;
PRODUCTIVITY;
RESTORATION;
BUTENOLIDES;
AMENDMENT;
COMPOUND;
VINEGAR;
D O I:
10.1371/journal.pone.0161234
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Background Karrikins are smoke-derived compounds that provide strong chemical cues to stimulate seed germination and seedling growth. The recent discovery in Arabidopsis that the karrikin perception system may be present throughout angiosperms implies a fundamental plant function. Here, we identify the most potent karrikin, karrikinolide (KAR(1)), in biochars and determine its role in species unique plant responses. Methods Biochars were prepared by three distinct commercial-scale pyrolysis technologies using systematically selected sourcematerial and their chemical properties, including karrikinolide, were quantified. Dose-response assays determined the effects of biochar on seed germination for two model species that require karrikinolide to break dormancy (Solanum orbiculatum, Brassica tourneforttii) and on seedling growth using two species that display plasticity to karrikins, biochar and phytotoxins (Lactuca sativa, Lycopersicon esculentum). Multivariate analysis examined relationships between biochar properties and the plant phenotype. Findings and Conclusions Results showed that karrikin abundant biochars stimulated dormant seed germination and seedling growth via mechanisms analogous to post-fire chemical cues. The individual species response was associated with its sensitivity to karrikinolide and inhibitory compounds within the biochars. These findings are critical for understanding why biochar influences community composition and plant physiology uniquely for different species and reaffirms that future pyrolysis technologies promise by-products that concomitantly sequester carbon and enhance plant growth for ecological and broader plant related applications.
引用
收藏
页数:19
相关论文