Loss Function Approaches for Multi-label Music Tagging

被引:3
|
作者
Knox, Dillon [1 ,3 ]
Greer, Timothy [2 ,3 ]
Ma, Benjamin [2 ,3 ]
Kuo, Emily [1 ,3 ]
Somandepalli, Krishna [1 ,3 ]
Narayanan, Shrikanth [1 ,3 ]
机构
[1] USC, Dept Elect Engn, Los Angeles, CA 90007 USA
[2] USC, Dept Comp Sci, Los Angeles, CA 90007 USA
[3] Univ Southern Calif, Signal Anal & Interpretat Lab, Los Angeles, CA 90089 USA
关键词
music tagging; loss functions; multi-label deep learning; convolutional neural networks;
D O I
10.1109/CBMI50038.2021.9461913
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given the ever-increasing volume of music created and released every day, it has never been more important to study automatic music tagging. In this paper, we present an ensemble-based convolutional neural network (CNN) model trained using various loss functions for tagging musical genres from audio. We investigate the effect of different loss functions and resampling strategies on prediction performance, finding that using focal loss improves overall performance on the the MTG-Jamendo dataset: an imbalanced, multi-label dataset with over 18,000 songs in the public domain, containing 57 labels. Additionally, we report results from varying the receptive field on our base classifier-a CNN-based architecture trained using Mel spectrograms-which also results in a model performance boost and state-of-the-art performance on the Jamendo dataset. We conclude that the choice of the loss function is paramount for improving on existing methods in music tagging, particularly in the presence of class imbalance.
引用
收藏
页码:191 / 194
页数:4
相关论文
共 50 条
  • [1] Multi-label Learning Approaches for Music Instrument Recognition
    Xioufis, Eleftherios Spyromitros
    Tsoumakas, Grigorios
    Vlahavas, Ioannis
    [J]. FOUNDATIONS OF INTELLIGENT SYSTEMS, 2011, 6804 : 734 - 743
  • [2] Extreme Multi-label Loss Functions for Recommendation, Tagging, Ranking & Other Missing Label Applications
    Jain, Himanshu
    Prabhu, Yashoteja
    Varma, Manik
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 935 - 944
  • [3] Multi-Label Annotation of Music
    Ahsan, Hiba
    Kumar, Vijay
    Jawahar, C. V.
    [J]. 2015 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2015, : 150 - 154
  • [4] Multi-Label Classification Method for Multimedia Tagging
    Ma, Aiyesha
    Sethi, Ishwar
    Patel, Nilesh
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA DATA ENGINEERING & MANAGEMENT, 2010, 1 (03): : 57 - 75
  • [5] SPARSE MULTI-LABEL LINEAR EMBEDDING NONNEGATIVE TENSOR FACTORIZATION FOR AUTOMATIC MUSIC TAGGING
    Panagakis, Yannis
    Kotropoulos, Constantine
    Arce, Gonzalo R.
    [J]. 18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 492 - 496
  • [6] Choosing the right loss function for multi-label Emotion Classification
    Hurtado, Lluis-E
    Gonzalez, Jose-Angel
    Pla, Ferran
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4697 - 4708
  • [7] Multi-label classification of music by emotion
    Trohidis, Konstantinos
    Tsoumakas, Grigorios
    Kalliris, George
    Vlahavas, Ioannis
    [J]. EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2011, : 1 - 9
  • [8] Multi-label classification of music by emotion
    Konstantinos Trohidis
    Grigorios Tsoumakas
    George Kalliris
    Ioannis Vlahavas
    [J]. EURASIP Journal on Audio, Speech, and Music Processing, 2011
  • [9] Multi-label classification of emotions in music
    Wieczorkowska, Alicja
    Synak, Piotr
    Ras, Zbigniew W.
    [J]. INTELLIGENT INFORMATION PROCESSING AND WEB MINING, PROCEEDINGS, 2006, : 307 - +
  • [10] Asymmetric Loss For Multi-Label Classification
    Ridnik, Tal
    Ben-Baruch, Emanuel
    Zamir, Nadav
    Noy, Asaf
    Friedman, Itamar
    Protter, Matan
    Zelnik-Manor, Lihi
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 82 - 91