Worst-case VaR and robust portfolio optimization with interval random uncertainty set

被引:13
|
作者
Chen, Wei [1 ]
Tan, Shaohua [2 ]
Yang, Dongqing [1 ]
机构
[1] Peking Univ, Sch EECS, Minist Educ, Key Lab High Confidence Software Technol, Beijing 100871, Peoples R China
[2] Peking Univ, Sch EECS, Dept Machine Intelligence, Beijing 100871, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Interval random uncertainty set; Interval random chance-constrained programming; programming; Value-at-risk;
D O I
10.1016/j.eswa.2010.06.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper addresses a new uncertainty set - interval random uncertainty set for worst-case value-at-risk and robust portfolio optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust worst-case value-at-risk optimization under interval random uncertainty sets in the elements of mean vector and covariance matrix. Numerical experiments with real market data indicate that our approach results in better portfolio performance. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:64 / 70
页数:7
相关论文
共 50 条
  • [1] Fuzzy portfolio optimization model based on worst-case VaR
    Liu, YC
    Wang, T
    Gao, LQ
    Ren, P
    Liu, BZ
    [J]. PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 3512 - 3516
  • [2] On worst-case portfolio optimization
    Korn, Ralf
    Steffensen, Mogens
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (06) : 2013 - 2030
  • [3] Robust International Portfolio Optimization with Worst-Case Mean-LPM
    Luan, Fei
    Zhang, Weiguo
    Liu, Yongjun
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [4] Robust international portfolio optimization with worst-case mean-CVaR
    Luan, Fei
    Zhang, Weiguo
    Liu, Yongjun
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 303 (02) : 877 - 890
  • [5] Worst-case regret algorithms for selected optimization problems with interval uncertainty
    Jozefczyk, Jerzy
    Siepak, Marcin
    [J]. KYBERNETES, 2013, 42 (03) : 371 - 382
  • [6] Robust portfolio selection with uncertain exit time using worst-case VaR strategy
    Huang, Dashan
    Fabozzi, Frank J.
    Fukushima, Masao
    [J]. Proceedings of the Fifth International Conference on Information and Management Sciences, 2006, 5 : 454 - 461
  • [7] Robust portfolio selection with uncertain exit time using worst-case VaR strategy
    Huang, Dashan
    Fabozzi, Frank J.
    Fukushima, Masao
    [J]. OPERATIONS RESEARCH LETTERS, 2007, 35 (05) : 627 - 635
  • [8] Worst-case portfolio optimization in discrete time
    Lihua Chen
    Ralf Korn
    [J]. Mathematical Methods of Operations Research, 2019, 90 : 197 - 227
  • [9] WORST-CASE PORTFOLIO OPTIMIZATION IN A MARKET WITH BUBBLES
    Belak, Christoph
    Christensen, Soren
    Menkens, Olaf
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2016, 19 (02)
  • [10] Worst-case portfolio optimization in discrete time
    Chen, Lihua
    Korn, Ralf
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2019, 90 (02) : 197 - 227