Deep Learning-Aided 5G Channel Estimation

被引:24
|
作者
Le Ha, An [1 ,4 ]
Trinh Van Chien [2 ,3 ]
Tien Hoa Nguyen [1 ]
Choi, Wan [4 ]
Van Duc Nguyen [1 ]
机构
[1] Hanoi Univ Sci & Technol, Sch Elect & Telecommun, Hanoi, Vietnam
[2] Hanoi Univ Sci & Technol, Sch Informat & Commun Technol, Hanoi, Vietnam
[3] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, Luxembourg, Luxembourg
[4] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul, South Korea
关键词
Deep Neural Networks; Channel Estimation; Multiple-Input Multiple-Output; Frequency Selective Channels;
D O I
10.1109/IMCOM51814.2021.9377351
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning has demonstrated the important roles in improving the system performance and reducing computational complexity for 5G-and-heyond networks. In this paper, we propose a new channel estimation method with the assistance of deep learning in order to support the least squares estimation, which is a low-cost method but having relatively high channel estimation errors. This goal is achieved by utilizing a MIMO (multiple-input multiple-output) system with a multi-path channel profile used for simulations in the 5G networks under the severity of Doppler effects. Numerical results demonstrate the superiority of the proposed deep learning-assisted channel estimation method over the other channel estimation methods in previous works in terms of mean square errors.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Learning-aided joint time-frequency channel estimation for 5G new radio
    Myers, Nitin Jonathan
    Kwon, Hyukjoon
    Ding, Yacong
    Song, Kee-Bong
    [J]. 2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [2] Deep Learning Aided Channel Estimation Approach for 5G Communication Systems
    Mutlu, Ural
    Kabalci, Yasin
    [J]. 2022 IEEE 4TH GLOBAL POWER, ENERGY AND COMMUNICATION CONFERENCE (IEEE GPECOM2022), 2022, : 655 - 660
  • [3] Towards Deep Learning-aided Wireless Channel Estimation and Channel State Information Feedback for 6G
    Kim, Wonjun
    Ahn, Yongjun
    Kim, Jinhong
    Shim, Byonghyo
    [J]. JOURNAL OF COMMUNICATIONS AND NETWORKS, 2023, 25 (01) : 61 - 75
  • [4] Channel Estimation in 5G and Beyond Networks Using Deep Learning
    Singh, Yashveer
    Swami, Pragya
    Bhatia, Vimal
    Brida, Peter
    [J]. 2024 34TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA, RADIOELEKTRONIKA 2024, 2024,
  • [5] A DEEP LEARNING APPROACH FOR CHANNEL ESTIMATION IN 5G WIRELESS COMMUNICATIONS
    Ebrahiem, Karam M.
    Soliman, Heba Y.
    Abuelenin, Sherif M.
    El-Badawy, Hesham M.
    [J]. PROCEEDINGS OF 2021 38TH NATIONAL RADIO SCIENCE CONFERENCE (NRSC), 2021, : 117 - 125
  • [6] Deep Learning-Aided Channel Allocation Scheme for WLAN
    Lee, Woongsup
    Seo, Jun-Bae
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (06) : 1007 - 1011
  • [7] Deep Learning Channel Estimation for OFDM 5G Systems with Different Channel Models
    Mohammed, Aliaa Said Mousa
    Taman, Abdelkarim Ibrahim Abdelkarim
    Hassan, Ayman M.
    Zekry, Abdelhalim
    [J]. WIRELESS PERSONAL COMMUNICATIONS, 2023, 128 (04) : 2891 - 2912
  • [8] Deep Learning Channel Estimation for OFDM 5G Systems with Different Channel Models
    Aliaa Said Mousa Mohammed
    Abdelkarim Ibrahim Abdelkarim Taman
    Ayman M. Hassan
    Abdelhalim Zekry
    [J]. Wireless Personal Communications, 2023, 128 : 2891 - 2912
  • [9] Deep Learning-Aided Coding for the Fading Broadcast Channel with Feedback
    Li, Siyao
    Tuninetti, Daniela
    Devroye, Natasha
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 3874 - 3879
  • [10] Deep Learning-Aided SCMA
    Kim, Minhoe
    Kim, Nam-I
    Lee, Woongsup
    Cho, Dong-Ho
    [J]. IEEE COMMUNICATIONS LETTERS, 2018, 22 (04) : 720 - 723