Optimal L2 Error Estimates for the Interior Penalty DG Method for Maxwell's Equations in Cold Plasma

被引:16
|
作者
Li, Jichun [1 ]
机构
[1] Univ Nevada, Dept Math Sci, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
Maxwell's equations; cold plasma; discontinuous Galerkin method; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT-METHOD;
D O I
10.4208/cicp.011209.160610s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider an interior penalty discontinuous Galerkin (DG) method for the time-dependent Maxwell's equations in cold plasma. In Huang and Li (J. Sci. Comput., 42 (2009), 321-340), for both semi and fully discrete DG schemes, we proved error estimates which are optimal in the energy norm, but sub-optimal in the L-2-norm. Here by filling this gap, we show that these schemes are optimally convergent in the L-2-norm on quasi-uniform tetrahedral meshes if the solution is sufficiently smooth.
引用
收藏
页码:319 / 334
页数:16
相关论文
共 50 条