Application of planar antenna in field-effect transistor terahertz detectors

被引:5
|
作者
Wang Xiao-Dong [1 ,3 ]
Yan Wei [1 ]
Li Zhao-feng [1 ,2 ,3 ]
Zhang Bo-wen [1 ,2 ]
Huang Zhen [1 ,2 ]
Yang Fu-hua [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Semicond, Engn Res Ctr Semicond Integrated Technol, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Microelect, Beijing 100049, Peoples R China
[4] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
来源
CHINESE OPTICS | 2020年 / 13卷 / 01期
关键词
FET THz detectors; planar antenna; grating-gate; responsivity; noise equivalent power; RESONANT DETECTION; PLASMON MODES; RADIATION; SUBTERAHERTZ; ABSORPTION; EMISSION; WAVES;
D O I
10.3788/CO.20201301.0001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In order to improve the responsivity and reduce the noise equivalent power of Field-Effect Transistor (FET) THz detectors, a suitable planar antenna structure is necessary. In this paper. we investigate the research progress of FET THz detectors integrated with planar antenna structures. Firstly, we analyze the working principle of FET THz detectors and clarify that an integrated planar antenna could effectively improve the detector's performance by enhancing its coupling efficiency with terahertz waves. Secondly, we present some typical planar antennas and discuss their pros and cons. These include the dipole antenna, the patch antenna. the slot antenna, the grating-gate, and others, which are each compared with respect to responsivity for the detectors. Finally, we find that the responsivity of the FET THz detectors can be greatly improved when applying planar antenna structure and that each type of antennas contributes uniquely. This work introduces several planar antennas integrated into FET THz detectors. including the performance and research progress of various antennas. Some existing problems are described and some predictions of the future development trends for this technology are summarized.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 51 条
  • [1] Bauer M, 2015, 2015 10TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC), P1, DOI 10.1109/EuMIC.2015.7345053
  • [2] Bauer M, 2013, EUR MICROW INTEGRAT, P212
  • [3] Performance and performance variations of sub-1 THz detectors fabricated with 0.15 μm CMOS foundry process
    Boppel, S.
    Lisauskas, A.
    Krozer, V.
    Roskos, H. G.
    [J]. ELECTRONICS LETTERS, 2011, 47 (11) : 661 - 662
  • [4] CMOS Integrated Antenna-Coupled Field-Effect Transistors for the Detection of Radiation From 0.2 to 4.3 THz
    Boppel, Sebastian
    Lisauskas, Alvydas
    Mundt, Martin
    Seliuta, Dalius
    Minkevicius, Linas
    Kasalynas, Irmantas
    Valusis, Gintaras
    Mittendorff, Martin
    Winnerl, Stephan
    Krozer, Viktor
    Roskos, Hartmut G.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (12) : 3834 - 3843
  • [5] PHOTOMIXING UP TO 3.8-THZ IN LOW-TEMPERATURE-GROWN GAAS
    BROWN, ER
    MCINTOSH, KA
    NICHOLS, KB
    DENNIS, CL
    [J]. APPLIED PHYSICS LETTERS, 1995, 66 (03) : 285 - 287
  • [6] PHOTON-ASSISTED TUNNELING IN A RESONANT-TUNNELING DIODE - STIMULATED-EMISSION AND ABSORPTION IN THE THZ RANGE
    DREXLER, H
    SCOTT, JS
    ALLEN, SJ
    CAMPMAN, KL
    GOSSARD, AC
    [J]. APPLIED PHYSICS LETTERS, 1995, 67 (19) : 2816 - 2818
  • [7] SHALLOW-WATER ANALOGY FOR A BALLISTIC FIELD-EFFECT TRANSISTOR - NEW MECHANISM OF PLASMA-WAVE GENERATION BY DC CURRENT
    DYAKONOV, M
    SHUR, M
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (15) : 2465 - 2468
  • [8] Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid
    Dyakonov, M
    Shur, M
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (03) : 380 - 387
  • [9] Plasma wave electronics: Novel terahertz devices using two dimensional electron fluid
    Dyakonov, MI
    Shur, MS
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (10) : 1640 - 1645
  • [10] A terahertz plasmon cavity detector
    Dyer, G. C.
    Vinh, N. Q.
    Allen, S. J.
    Aizin, G. R.
    Mikalopas, J.
    Reno, J. L.
    Shaner, E. A.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (19)