1T-MoS2 monolayer as a promising anode material for (Li/Na/Mg)-ion batteries

被引:102
|
作者
He, Xiaojie [1 ]
Wang, Ruichen [1 ]
Yin, Huimin [1 ]
Zhang, Yongfan [1 ]
Chen, Wenkai [1 ]
Huang, Shuping [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Chem, Fuzhou 350108, Fujian, Peoples R China
[2] Fujian Prov Key Lab Electrochem Energy Storage Ma, Fuzhou 350108, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Anode; 2D material; 1T-MoS2; Rechargeable batteries; Density functional theory; ELASTIC BAND METHOD; MOS2; NANOSHEETS; ENERGY-STORAGE; ION BATTERY; 1T MOS2; TRANSITION; INTERCALATION; MECHANISM; POINTS;
D O I
10.1016/j.apsusc.2022.152537
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition metal sulfide with high electrical conductivity and thermal stability has been considered as a promising anode candidate for rechargeable batteries. Among them, 1T-MoS2 nanosheet with a honeycomb structure like graphene, has attracted increasing attention recently due to its excellent electrochemical performance. In this paper, the density functional theory calculations have been employed to investigate and compare the interaction of Li, Na, K, Mg, and Al with the 1T-MoS2 monolayer, including the geometry configurations, electronic structures, ions diffusion properties, open-circuit voltages, and specific theoretical capacities. All metal atoms adsorbed on 1T-MoS2 monolayer with negative adsorption energies, indicating strong binding between metals and 1T-MoS2 monolayer and in favor of battery application. The diffusion barriers of all metal ions are less than 0.2 eV, indicating good charge-discharge rates. The OCV range of 1T-MoS2 as Li-ion, Na-ion and Mg-ion batteries anodes is around 0.2 similar to 0.8 V, and the specific capacities are 1172, 335, and 670 mAh/g, respectively. Our results indicate that the high capacity, low open-circuit voltage, and ultrahigh ion diffusion kinetics make the 1T-MoS2 an excellent candidate as anode material for Li-ion batteries, Na-ion batteries and Mg-ion batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Multiphase MoS2 monolayer: A promising anode material for Mg-Ion batteries
    Panjulingam, Nandhini
    Lakshmipathi, Senthilkumar
    IONICS, 2023, 29 (11) : 4751 - 4764
  • [2] Multiphase MoS2 monolayer: A promising anode material for Mg-Ion batteries
    Nandhini Panjulingam
    Senthilkumar Lakshmipathi
    Ionics, 2023, 29 : 4751 - 4764
  • [3] Arsenene monolayer as an outstanding anode material for (Li/Na/Mg)-ion batteries: density functional theory
    Benzidi, Hind
    Lakhal, Marwan
    Garara, Mourad
    Abdellaoui, Mustapha
    Benyoussef, Abdelilah
    El Kenz, Abdallah
    Mounkachi, Omar
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (36) : 19951 - 19962
  • [4] Phosphorene as a promising anode material for (Li/Na/Mg)-ion batteries: A first-principle study
    Sibari, A.
    El Marjaoui, A.
    Lakhal, M.
    Kerrami, Z.
    Kara, A.
    Benaissa, M.
    Ennaoui, A.
    Hamedoun, M.
    Benyoussef, A.
    Mounkachi, O.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 180 : 253 - 257
  • [5] Bi-C monolayer as a promising 2D anode material for Li, Na, and K-ion batteries
    Ghani, Awais
    Ahmed, Shehzad
    Murtaza, Adil
    Muhammad, Imran
    Rehman, Wasif ur
    Zhou, Chao
    Zuo, Wen Liang
    Yang, Sen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (06) : 4980 - 4986
  • [6] PPy modified 1T-MoS2 hollow spheres with cohesive architecture as high-performance anode material for Li-ion batteries
    Wen, Gongyu
    Zhong, Shengkui
    Zhang, Xiaoping
    Shi, Zhihao
    Wang, Bingjue
    Sui, Yulei
    Zeng, Jia
    Zhang, Ziwei
    Wu, Ling
    CERAMICS INTERNATIONAL, 2022, 48 (07) : 9781 - 9787
  • [7] Metallic B2C monolayer as a promising anode material for Li/Na ion storage
    Yu, Xiaohua
    Chen, Xuhui
    Wang, Xiao
    Yuan, Zhentao
    Feng, Jing
    Rong, Ju
    CHEMICAL ENGINEERING JOURNAL, 2021, 406
  • [8] Monolayer SnC as anode material for Na ion batteries
    Butt, Mehwish Khalid
    Zeeshan, Hafiz Muhammad
    Van An Dinh
    Zhao, Yang
    Wang, Shuanhu
    Jin, Kexin
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 197
  • [9] First-Principles Study of Monolayer penta-CoS2 as a Promising Anode Material for Li/Na-ion Batteries
    Debbichi, M.
    Mallah, A.
    Dhaou, M. Houcine
    Lebegue, S.
    PHYSICAL REVIEW APPLIED, 2021, 16 (02):
  • [10] Nb2N monolayer as a promising anode material for Li/Na/K/Ca-ion batteries: a DFT calculation
    Wang, Yanwei
    Tian, Wu
    Zhang, Huijuan
    Wang, Yu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (21) : 12288 - 12295