Robust Covariance Matrix Estimation in Heterogeneous Low Rank Context

被引:19
|
作者
Breloy, Arnaud [1 ,2 ,3 ]
Ginolhac, Guillaume [4 ]
Pascal, Frederic [5 ]
Forster, Philippe [1 ]
机构
[1] ENS Cachan, CNRS, SATIE, F-94230 Cachan, France
[2] Cent Supelec, SONDRA, F-91192 Gif Sur Yvette, France
[3] Univ Paris 10, Lab Energet Mecan Electromagnetisme, F-92000 Nanterre, France
[4] Univ Savoie Mt Blanc, Lab Informat Syst Traitement Informat & Connaissa, F-73000 Chambery, France
[5] Cent Supelec, L2S, F-91192 Gif Sur Yvette, France
关键词
Adaptive signal processing; covariance matrix and subspace estimation; robust estimation; ML-estimation; low rank; SIRV; STAP; ELLIPTICALLY SYMMETRIC DISTRIBUTIONS; COMPOUND-GAUSSIAN CLUTTER; VECTOR SUBSPACE DETECTION; STATISTICAL-ANALYSIS; SOURCE ENUMERATION; NOISE; ALGORITHMS; OPTIMIZATION; PERFORMANCE; EXISTENCE;
D O I
10.1109/TSP.2016.2599494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the problem of robust covariance matrix (CM) estimation in the context of a disturbance composed of a low rank (LR) heterogeneous clutter plus an additive white Gaussian noise. The LR clutter is modeled by a spherically invariant random vector with assumed high clutter-to-noise ratio. In such a context, adaptive process should require less training samples than classical methods to reach equivalent performance as in a "full rank" clutter configuration. The main issue is that classical robust estimators of the CM cannot be computed in the undersampled configuration. To overcome this issue, the current approach is based on regularization methods. Nevertheless, most of these solutions are enforcing the estimate to be well conditioned, while in our context, it should be LR structured. This paper, therefore, addresses this issue and derives an algorithm to compute the maximum likelihood estimator of the CM for the considered disturbance model. Several relaxations and robust generalizations of the result are discussed. Performance is finally illustrated on numerical simulations and on a space time adaptive processing for airborne radar application.
引用
收藏
页码:5794 / 5806
页数:13
相关论文
共 50 条
  • [1] Robust Rank Constrained Kronecker Covariance Matrix Estimation
    Breloy, A.
    Sun, Y.
    Babu, P.
    Ginolhac, G.
    Palomar, D. P.
    [J]. 2016 50TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2016, : 810 - 814
  • [2] Robust low-rank covariance matrix estimation with a general pattern of missing values
    Hippert-Ferrer, A.
    El Korso, M. N.
    Breloy, A.
    Ginolhac, G.
    [J]. SIGNAL PROCESSING, 2022, 195
  • [3] Low-Rank Structured Covariance Matrix Estimation
    Shikhaliev, Azer P.
    Potter, Lee C.
    Chi, Yuejie
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) : 700 - 704
  • [4] Sparse and Low-Rank Covariance Matrix Estimation
    Zhou S.-L.
    Xiu N.-H.
    Luo Z.-Y.
    Kong L.-C.
    [J]. Journal of the Operations Research Society of China, 2015, 3 (02) : 231 - 250
  • [5] ROBUST LOW-RANK MATRIX ESTIMATION
    Elsener, Andreas
    van de Geer, Sara
    [J]. ANNALS OF STATISTICS, 2018, 46 (6B): : 3481 - 3509
  • [6] Rank covariance matrix estimation of a partially known covariance matrix
    Kuljus, Kristi
    von Rosen, Dietrich
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (12) : 3667 - 3673
  • [7] Low Rank Regularized ML Estimation of Structured Covariance Matrix
    Rao, Wei
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2016, : 54 - 57
  • [8] Low-rank covariance matrix tapering for robust adaptive beamforming
    Ruebsamen, Michael
    Gerlach, Christian
    Gershman, Alex B.
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 2333 - 2336
  • [9] Clutter Subspace Estimation in Low Rank Heterogeneous Noise Context
    Breloy, Arnaud
    Ginolhac, Guillaume
    Pascal, Frederic
    Forster, Philippe
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (09) : 2173 - 2182
  • [10] Covariance matrix estimation with heterogeneous samples
    Besson, Olivier
    Bidon, Stephanie
    Tourneret, Jearl-Yves
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (03) : 909 - 920