Spatio-temporal evolution of the L→I→H transition

被引:114
|
作者
Miki, K. [1 ]
Diamond, P. H. [1 ,2 ,3 ]
Guercan, Oe. D. [4 ]
Tynan, G. R. [2 ]
Estrada, T. [5 ]
Schmitz, L. [6 ]
Xu, G. S. [7 ]
机构
[1] Natl Fus Res Inst, WCI Ctr Fus Theory, Taejon 305333, South Korea
[2] Univ Calif San Diego, Ctr Momentum Transport & Flow Org, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA
[4] CNRS, Ecole Polytech, LPP, F-75700 Paris, France
[5] Asociac Euratom CIEMAT, Lab Nacl Fus, Madrid, Spain
[6] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
[7] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China
基金
新加坡国家研究基金会;
关键词
L-H TRANSITIONS; TRANSPORT BARRIERS; TURBULENCE; MODE; CONFINEMENT; DYNAMICS; FLOWS;
D O I
10.1063/1.4753931
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the dynamics of the low(L)! high(H) transition using a time-dependent, one dimensional (in radius) model which self-consistently describes the time evolution of zonal flows (ZFs), mean flows (MFs), poloidal spin-up, and density and pressure profiles. The model represents the physics of ZF and MF competition, turbulence suppression via E x B shearing, and poloidal flows driven by turbulence. Numerical solutions of this model show that the L -> H transition can occur via an intermediate phase (I-phase) which involves oscillations of profiles due to ZF and MF competition. The I-phase appears as a nonlinear transition wave originating at the edge boundary and propagates inward. Locally, I-phase exhibits the characteristics of a limit-cycle oscillation. All these observations are consistent with recent experimental results. We examine the trigger of the L -> H transition, by defining a ratio of the rate of energy transfer from the turbulence to the zonal flow to the rate of energy input into the turbulence. When the ratio exceeds order unity, ZF shear gains energy, and a net decay of the turbulence is possible, thus triggering the L -> H transition. Numerical calculations indicate that the L -> H transition is triggered by this peak of the normalized ZF shearing. Zonal flows act as "reservoir," in which to store increasing fluctuation energy without increasing transport, thus allowing the mean flow shear to increase and lock in the transition. A counterpart of the L -> I -> H transition, i.e., an L -> H transition without I-phase, is obtained in a fast power ramp, for which I-phase is compressed into a single burst of ZF, which triggers the transition. Effects of neutral charge exchange on the L -> H transition are studied by varying ZF damping and neoclassical viscosity. Results show that the predicted L -> H transition power increases when either ZF damping or viscosity increase, suggesting a link between recycling, ZF damping, and the L -> H threshold. Studies of fueling effects on the transition and pedestal structure with an emphasis on the particle pinch are reported. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4753931]
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Spatio-temporal evolution of the H → L back transition
    Miki, K.
    Diamond, P. H.
    Schmitz, L.
    McDonald, D. C.
    Estrada, T.
    Guercan, Oe. D.
    Tynan, G. R.
    [J]. PHYSICS OF PLASMAS, 2013, 20 (06)
  • [2] Spatio-temporal evolution of the L→H and H→L transitions
    Miki, K.
    Diamond, P. H.
    Fedorczak, N.
    Guercan, Oe D.
    Malkov, M.
    Lee, C.
    Kosuga, Y.
    Tynan, G.
    Xu, G. S.
    Estrada, T.
    McDonald, D.
    Schmitz, L.
    Zhao, K. J.
    [J]. NUCLEAR FUSION, 2013, 53 (07)
  • [3] Spatio-Temporal Evolution of Scientific Knowledge
    Trajcevski, Goce
    Teng, Xu
    Taneja, Shailav
    [J]. NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS, ADBIS 2017, 2017, 767 : 199 - 210
  • [4] A Graph Model for Spatio-temporal Evolution
    Del Mondo, Geraldine
    Stell, John G.
    Claramunt, Christophe
    Thibaud, Remy
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2010, 16 (11) : 1452 - 1477
  • [5] Modeling spatio-temporal field evolution
    A. Borštnik Bračič
    I. Grabec
    E. Govekar
    [J]. The European Physical Journal B, 2009, 69 : 529 - 538
  • [6] Spatio-temporal Evolution as Bigraph Dynamics
    Stell, John
    Del Mondo, Geraldine
    Thibaud, Remy
    Claramunt, Christophe
    [J]. SPATIAL INFORMATION THEORY, 2011, 6899 : 148 - +
  • [7] Modeling spatio-temporal field evolution
    Borstnik Bracic, A.
    Grabec, I.
    Govekar, E.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2009, 69 (04): : 529 - 538
  • [8] Transition effects characterization on spatio-temporal images
    Ruioloba, RI
    Joly, P
    [J]. INTERNET MULTIMEDIA MANAGEMENT SYSTEMS, 2000, 4210 : 299 - 310
  • [9] Spatio-temporal evolution of a thermokarst in Interior Alaska
    Toniolo, H.
    Kodial, P.
    Hinzman, L. D.
    Yoshikawa, K.
    [J]. COLD REGIONS SCIENCE AND TECHNOLOGY, 2009, 56 (01) : 39 - 49
  • [10] Generation and Spatio-Temporal Evolution of Polarization Speckle
    Wang, Wei
    Ma, Ning
    Ritter, Jonas
    Hanson, Steen G.
    Osten, Wolfgang
    Takeda, Mitsuo
    [J]. SPECKLE 2018: VII INTERNATIONAL CONFERENCE ON SPECKLE METROLOGY, 2018, 10834