Vineyard Segmentation from Satellite Imagery Using Machine Learning

被引:6
|
作者
Santos, Luis [1 ,2 ]
Santos, Filipe N. [1 ]
Filipe, Vitor [1 ,2 ]
Shinde, Pranjali [1 ]
机构
[1] INESC TEC INESC Technol & Sci, Porto, Portugal
[2] Univ Tras Os Montes & Alto Douro, UTAD, Vila Real, Portugal
关键词
Vineyard; Satellite images; Machine learning; Agricultural robotics; Path planning; CROP ROW DETECTION; CLASSIFICATION; EXTRACTION;
D O I
10.1007/978-3-030-30241-2_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Steep slope vineyards are a complex scenario for the development of ground robots due to the harsh terrain conditions and unstable localization systems. Automate vineyard tasks (like monitoring, pruning, spraying, and harvesting) requires advanced robotic path planning approaches. These approaches usually resort to Simultaneous Localization and Mapping (SLAM) techniques to acquire environment information, which requires previous navigation of the robot through the entire vineyard. The analysis of satellite or aerial images could represent an alternative to SLAM techniques, to build the first version of occupation grid map (needed by robots). The state of the art for aerial vineyard images analysis is limited to flat vineyards with straight vine's row. This work considers a machine learning based approach (SVM classifier with Local Binary Pattern (LBP) based descriptor) to perform the vineyard segmentation from public satellite imagery. In the experiments with a dataset of satellite images from vineyards of Douro region, the proposed method achieved accuracy over 90%.
引用
收藏
页码:109 / 120
页数:12
相关论文
共 50 条
  • [1] Automatic Target Detection from Satellite Imagery Using Machine Learning
    Tahir, Arsalan
    Munawar, Hafiz Suliman
    Akram, Junaid
    Adil, Muhammad
    Ali, Shehryar
    Kouzani, Abbas Z.
    Mahmud, M. A. Pervez
    SENSORS, 2022, 22 (03)
  • [2] Land Cover Prediction from Satellite Imagery Using Machine Learning Techniques
    Panda, Abhisek
    Singh, Abhisek
    Kumar, Keshav
    Kumar, Akash
    Uddeshya
    Swetapadma, Aleena
    PROCEEDINGS OF THE 2018 SECOND INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2018, : 1403 - 1407
  • [3] Detecting Arsenic Contamination Using Satellite Imagery and Machine Learning
    Agrawal, Ayush
    Petersen, Mark R.
    TOXICS, 2021, 9 (12)
  • [4] PHURIE: hurricane intensity estimation from infrared satellite imagery using machine learning
    Amina Asif
    Muhammad Dawood
    Bismillah Jan
    Javaid Khurshid
    Mark DeMaria
    Fayyaz ul Amir Afsar Minhas
    Neural Computing and Applications, 2020, 32 : 4821 - 4834
  • [5] Vineyard Zoning and Vine Detection Using Machine Learning in Unmanned Aerial Vehicle Imagery
    Gavrilovic, Milan
    Jovanovic, Dusan
    Bozovic, Predrag
    Benka, Pavel
    Govedarica, Miro
    REMOTE SENSING, 2024, 16 (03)
  • [6] PHURIE: hurricane intensity estimation from infrared satellite imagery using machine learning
    Asif, Amina
    Dawood, Muhammad
    Jan, Bismillah
    Khurshid, Javaid
    DeMaria, Mark
    Minhas, Fayyaz ul Amir Afsar
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (09): : 4821 - 4834
  • [7] VINEYARD CLASSIFICATION USING MACHINE LEARNING TECHNIQUES APPLIED TO RGB-UAV IMAGERY
    Padua, Luis
    Adao, Telmo
    Hruska, Jonas
    Guimaraes, Nathalie
    Marques, Pedro
    Peres, Emanuel
    Sousa, Joaquim J.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6309 - 6312
  • [8] Quantifying urban flood extent using satellite imagery and machine learning
    Composto, Rebecca W.
    Tulbure, Mirela G.
    Tiwari, Varun
    Gaines, Mollie D.
    Caineta, Julio
    NATURAL HAZARDS, 2025, 121 (01) : 175 - 199
  • [9] Urban building extraction using satellite imagery through Machine Learning
    Prakash, P. S.
    Soumya, K. D.
    Bharath, H. A.
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1670 - 1675
  • [10] Flood Detection in Urban Areas Using Satellite Imagery and Machine Learning
    Tanim, Ahad Hasan
    McRae, Callum Blake
    Tavakol-Davani, Hassan
    Goharian, Erfan
    WATER, 2022, 14 (07)