Efficient computation of Tate pairing in projective coordinate over general characteristic fields

被引:0
|
作者
Chatterjee, S [1 ]
Sarkar, P [1 ]
Barua, R [1 ]
机构
[1] Indian Stat Inst, Appl Stat Unit, Cryptol Res Grp, Kolkata 700108, W Bengal, India
关键词
Tate pairing; Jacobian coordinate; efficient implementation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the use of Jacobian coordinates for Tate pairing over general characteristics. The idea of encapsulated double-and-line computation and add-and-line computation has been introduced. We also describe the encapsulated version of iterated doubling. Detailed algorithms are presented in each case and memory requirement has been considered. The inherent parallelism in each of the algorithms have been identified leading to optimal two-multiplier algorithm. The cost comparison of our algorithm with previously best known algorithms shows an efficiency improvement of around 33% in the general case and an efficiency improvement of 20% for the case of the curve parameter a = -3.
引用
下载
收藏
页码:168 / 181
页数:14
相关论文
共 47 条
  • [1] Efficient Tate pairing computation for elliptic curves over binary fields
    Kwon, S
    INFORMATION SECURITY AND PRIVACY, PROCEEDINGS, 2005, 3574 : 134 - 145
  • [2] A method for efficient parallel computation of Tate pairing
    Su, Zhitu
    Sun, Chunhui
    Li, Hui
    Ma, Jianfeng
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2012, 3 (01) : 43 - 52
  • [3] Efficient Architecture for the Tate Pairing in Characteristic Three
    Li, Qingwei
    Wang, Zhongfeng
    Zhang, Xinmiao
    Liu, Xingcheng
    2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2008), VOLS 1-4, 2008, : 1111 - +
  • [4] Efficient hardware for the Tate pairing calculation in characteristic three
    Kerins, T
    Marnane, WP
    Popovici, EM
    Barreto, PSLM
    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2005, PROCEEDINGS, 2005, 3659 : 412 - 426
  • [5] The Tate pairing for Abelian varieties over finite fields
    Bruin, Peter
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2011, 23 (02): : 323 - 328
  • [6] A note on the Tate pairing of curves over finite fields
    F. Hess
    Archiv der Mathematik, 2004, 82 : 28 - 32
  • [7] A note on the Tate pairing of curves over finite fields
    Hess, F
    ARCHIV DER MATHEMATIK, 2004, 82 (01) : 28 - 32
  • [8] Efficient Tate pairing computation using double-base chains
    Zhao ChangAn
    Zhang FangGuo
    Huang JiWu
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (08): : 1096 - 1105
  • [9] Efficient Tate pairing computation using double-base chains
    ChangAn Zhao
    FangGuo Zhang
    JiWu Huang
    Science in China Series F: Information Sciences, 2008, 51
  • [10] Efficient Tate pairing computation using double-base chains
    ZHAO ChangAn
    Science China(Information Sciences), 2008, (08) : 1096 - 1105