Predictive pollen-based biome modeling using machine learning

被引:23
|
作者
Sobol, Magdalena K. [1 ]
Finkelstein, Sarah A. [1 ]
机构
[1] Univ Toronto, Dept Earth Sci, Toronto, ON, Canada
来源
PLOS ONE | 2018年 / 13卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
SUPPORT VECTOR MACHINES; LAST GLACIAL MAXIMUM; ARTIFICIAL NEURAL-NETWORKS; RANDOM FOREST CLASSIFIER; CLIMATE-CHANGE; LATE QUATERNARY; PHYLOGENETIC-RELATIONSHIPS; LOGISTIC-REGRESSION; SOUTHERN-AFRICA; NATIONAL-PARK;
D O I
10.1371/journal.pone.0202214
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper investigates suitability of supervised machine learning classification methods for classification of biomes using pollen datasets. We assign modern pollen samples from Africa and Arabia to five biome classes using a previously published African pollen dataset and a global ecosystem classification scheme. To test the applicability of traditional and machine-learning based classification models for the task of biome prediction from high dimensional modern pollen data, we train a total of eight classification models, including Linear Discriminant Analysis, Logistic Regression, Naive Bayes, K-Nearest Neighbors, Classification Decision Tree, Random Forest, Neural Network, and Support Vector Machine. The ability of each model to predict biomes from pollen data is statistically tested on an independent test set. The Random Forest classifier outperforms other models in its ability correctly classify biomes given pollen data. Out of the eight models, the Random Forest classifier scores highest on all of the metrics used for model evaluations and is able to predict four out of five biome classes to high degree of accuracy, including arid, montane, tropical and subtropical closed and open systems, e.g. forests and savanna/grassland. The model has the potential for accurate reconstructions of past biomes and awaits application to fossil pollen sequences. The Random Forest model may be used to investigate vegetation changes on both long and short time scales, e.g. during glacial and interglacial cycles, or more recent and abrupt climatic anomalies like the African Humid Period. Such applications may contribute to a better understanding of past shifts in vegetation cover and ultimately provide valuable information on drivers of climate change.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Pollen-based biome reconstructions for China at 0 and 6000 years
    Yu, G
    Prentice, IC
    Harrison, SP
    Sun, XJ
    JOURNAL OF BIOGEOGRAPHY, 1998, 25 (06) : 1055 - 1069
  • [2] Modern pollen-based biome reconstructions in East Africa expanded to southern Tanzania
    Vincens, Annie
    Bremond, Laurent
    Brewer, Simon
    Buchet, Guillaume
    Dussouillez, Philippe
    REVIEW OF PALAEOBOTANY AND PALYNOLOGY, 2006, 140 (3-4) : 187 - 212
  • [3] Mid- to Late-Holocene pollen-based biome reconstructions for Colombia
    Marchant, R
    Behling, H
    Berrio, JC
    Cleef, A
    Duivenvoorden, J
    Hooghiemstra, H
    Kuhry, P
    Melief, B
    Van Geel, B
    Van der Hammen, T
    Van Reenen, G
    Wille, M
    QUATERNARY SCIENCE REVIEWS, 2001, 20 (12) : 1289 - 1308
  • [4] Preliminary study on pollen-based biomization and Chinese biome mapping of 6 000 a BP
    Yu, G
    ACTA BOTANICA SINICA, 1998, 40 (07): : 665 - +
  • [5] Pollen-based predictive modelling of wine production: application to an arid region
    Cunha, Mario
    Ribeiro, Helena
    Abreu, Ilda
    EUROPEAN JOURNAL OF AGRONOMY, 2016, 73 : 42 - 54
  • [6] Pollen-based biome reconstruction for southern Europe and Africa 18,000 yr BP
    Elenga, H
    Peyron, O
    Bonnefille, R
    Jolly, D
    Cheddadi, R
    Guiot, J
    Andrieu, V
    Bottema, S
    Buchet, G
    de Beaulieu, JL
    Hamilton, AC
    Maley, J
    Marchant, R
    Perez-Obiol, R
    Reille, M
    Riollet, G
    Scott, L
    Straka, H
    Taylor, D
    Van Campo, E
    Vincens, A
    Laarif, F
    Jonson, H
    JOURNAL OF BIOGEOGRAPHY, 2000, 27 (03) : 621 - 634
  • [7] Colombian vegetation at the Last Glacial Maximum: a comparison of model- and pollen-based biome reconstructions
    Marchant, R
    Boom, A
    Behling, H
    Hooghiemstra, H
    Melief, B
    Van Geel, B
    Van Der Hammen, T
    Wille, M
    JOURNAL OF QUATERNARY SCIENCE, 2004, 19 (07) : 721 - 732
  • [8] Colombian dry moist forest transitions in the Llanos Orientales -: A comparison of model and pollen-based biome reconstructions
    Marchant, Robert
    Berrio, Juan Carlos
    Behling, Hermann
    Boom, Arnoud
    Hooghiemstra, Henry
    PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2006, 234 (01) : 28 - 44
  • [9] Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago
    Marchant, R.
    Cleef, A.
    Harrison, S. P.
    Hooghiemstra, H.
    Markgraf, V.
    van Boxel, J.
    Ager, T.
    Almeida, L.
    Anderson, R.
    Baied, C.
    Behling, H.
    Berrio, J. C.
    Burbridge, R.
    Bjorck, S.
    Byrne, R.
    Bush, M.
    Duivenvoorden, J.
    Flenley, J.
    De Oliveira, P.
    van Geel, B.
    Graf, K.
    Gosling, W. D.
    Harbele, S.
    van der Hammen, T.
    Hansen, B.
    Horn, S.
    Kuhry, P.
    Ledru, M. -P.
    Mayle, F.
    Leyden, B.
    Lozano-Garcia, S.
    Melief, A. M.
    Moreno, P.
    Moar, N. T.
    Prieto, A.
    van Reenen, G.
    Salgado-Labouriau, M.
    Schaebitz, F.
    Schreve-Brinkman, E. J.
    Wille, M.
    CLIMATE OF THE PAST, 2009, 5 (04) : 725 - 767
  • [10] Predictive Agent-Based Modeling of Natural Disasters Using Machine Learning
    Nerrise, Favour
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 15976 - 15977