Combined association rules for dealing with missing values

被引:16
|
作者
Shen, Jau-Ji
Chang, Chin-Chen
Li, Yu-Chiang
机构
[1] Feng Chia Univ, Dept Informat Engn & Comp Sci, Taichung 40724, Taiwan
[2] Natl Chung Hsing Univ, Dept Management Informat Syst, Taichung 40227, Taiwan
[3] Natl Chung Cheng Univ, Dept Comp Sci & Informat Engn, Chiayi, Taiwan
关键词
association rule; data mining; missing value; relational database;
D O I
10.1177/0165551506075329
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid increase in the use of databases, the problem of missing values inevitably arises. The techniques developed to recover these missing values effectively should be highly precise in order to estimate the missing values completely. The mining of association rules can effectively establish the relationship among items in databases. Therefore, discovered association rules are usually applied to recover the missing values in databases. This study presents a Fast Recycle Combined Association Rules (FRCAR) method to fill in the missing values. FRCAR applies a technique to recycle sub-frequent itemsets and bit-arrays to discover more association rules than the Missing Value Completion (MVC) approach. The experimental result demonstrates that FRCAR results in a higher recovery rate and higher recovery accuracy for missing values.
引用
收藏
页码:468 / 480
页数:13
相关论文
共 50 条
  • [1] Treatment of missing values for association rules
    Ragel, A
    Crémilleuz, B
    [J]. RESEARCH AND DEVELOPMENT IN KNOWLEDGE DISCOVERY AND DATA MINING, 1998, 1394 : 258 - 270
  • [2] Preprocessing of missing values using Robust Association Rules
    Ragel, A
    [J]. PRINCIPLES OF DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 1510 : 414 - 422
  • [3] Dealing with missing values in PLS
    不详
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1999, 49 (01) : 117 - 119
  • [4] APPLICATION OF ASSOCIATION RULES IN MISSING VALUES IMPUTATION IN CATEGORICAL DATASETS
    Kaiser, Jiri
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION 2010 IN PRAGUE (MS'10 PRAGUE), 2010, : 203 - 206
  • [5] Discovery of Association Rules from Data including Missing Values
    Sakurai, Shigeaki
    Mori, Kouichirou
    Orihara, Ryohei
    [J]. CISIS: 2009 INTERNATIONAL CONFERENCE ON COMPLEX, INTELLIGENT AND SOFTWARE INTENSIVE SYSTEMS, VOLS 1 AND 2, 2009, : 67 - 74
  • [6] Techniques for dealing with missing values in classification
    Liu, WZ
    White, AP
    Thompson, SG
    Bramer, MA
    [J]. ADVANCES IN INTELLIGENT DATA ANALYSIS: REASONING ABOUT DATA, 1997, 1280 : 527 - 536
  • [7] Dealing with Missing Values in Microarray Data
    Mohammadi, Azadeh
    Saraee, Mohammad Hossein
    [J]. 2008 INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES, PROCEEDINGS, 2008, : 258 - 263
  • [8] Dealing with missing values in proteomics data
    Kong, Weijia
    Hui, Harvard Wai Hann
    Peng, Hui
    Bin Goh, Wilson Wen
    [J]. PROTEOMICS, 2022, 22 (23-24)
  • [9] Gene expression clustering: Dealing with the missing values
    Gruzdz, A
    Ihnatowicz, A
    Slezak, D
    [J]. INTELLIGENT INFORMATION PROCESSING AND WEB MINING, PROCEEDINGS, 2005, : 521 - 530
  • [10] DEALING WITH MISSING VALUES IN NUCLEAR SAFEGUARDS EVALUATION
    Kabak, Ozgur
    Ruan, Da
    [J]. INTELLIGENT DECISION MAKING SYSTEMS, VOL. 2, 2010, : 145 - +