A graphical calculus for the Jack inner product on symmetric functions

被引:6
|
作者
Licata, Anthony [1 ]
Rosso, Daniele [2 ]
Savage, Alistair [3 ]
机构
[1] Australian Natl Univ, Math Sci Inst, Canberra, ACT, Australia
[2] Univ Calif Riverside, Dept Math, Riverside, CA 92521 USA
[3] Univ Ottawa, Dept Math & Stat, Ottawa, ON, Canada
基金
澳大利亚研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Symmetric functions; Jack inner product; Categorification; Heisenberg algebra; Graded Frobenius superalgebra; Fock space; Wreath product algebra; HILBERT SCHEMES; HEISENBERG CATEGORIFICATION; ALGEBRAS; TOWERS;
D O I
10.1016/j.jcta.2017.11.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting from a graded Frobenius superalgebra B, we consider a graphical calculus of B-decorated string diagrams. From this calculus we produce algebras consisting of closed planar diagrams and of closed annular diagrams. The action of annular diagrams on planar diagrams can be used to make clockwise (or counterclockwise) annular diagrams into an inner product space. Our main theorem identifies this space with the space of symmetric functions equipped with the Jack inner product at Jack parameter dim B-even - dim B-odd. In this way, we obtain a graphical realization of that inner product space. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:503 / 543
页数:41
相关论文
共 50 条