FORECASTING WITH DYNAMIC PANEL DATA MODELS

被引:27
|
作者
Liu, Laura [1 ]
Moon, Hyungsik Roger [2 ,3 ]
Schorfheide, Frank [4 ,5 ,6 ,7 ]
机构
[1] Indiana Univ, Dept Econ, Bloomington, IN 47405 USA
[2] Univ Southern Calif, Dept Econ, Los Angeles, CA 90007 USA
[3] Yonsei Univ, Seoul, South Korea
[4] Univ Penn, Dept Econ, Philadelphia, PA 19104 USA
[5] CEPR, London, England
[6] NBER, Cambridge, MA 02138 USA
[7] PIER, Philadelphia, PA USA
基金
美国国家科学基金会;
关键词
Bank stress tests; empirical Bayes; forecasting; panel data; ratio optimality; Tweedie's formula; EMPIRICAL BAYES;
D O I
10.3982/ECTA14952
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers the problem of forecasting a collection of short time series using cross-sectional information in panel data. We construct point predictors using Tweedie's formula for the posterior mean of heterogeneous coefficients under a correlated random effects distribution. This formula utilizes cross-sectional information to transform the unit-specific (quasi) maximum likelihood estimator into an approximation of the posterior mean under a prior distribution that equals the population distribution of the random coefficients. We show that the risk of a predictor based on a nonparametric kernel estimate of the Tweedie correction is asymptotically equivalent to the risk of a predictor that treats the correlated random effects distribution as known (ratio optimality). Our empirical Bayes predictor performs well compared to various competitors in a Monte Carlo study. In an empirical application, we use the predictor to forecast revenues for a large panel of bank holding companies and compare forecasts that condition on actual and severely adverse macroeconomic conditions.
引用
收藏
页码:171 / 201
页数:31
相关论文
共 50 条
  • [1] Forecasting regional GDPs: a comparison with spatial dynamic panel data models
    Bille, Anna Gloria
    Tomelleri, Alessio
    Ravazzolo, Francesco
    [J]. SPATIAL ECONOMIC ANALYSIS, 2023, 18 (04) : 530 - 551
  • [2] Pooling in dynamic panel-data models: An application to forecasting GDP growth sates
    Hoogstrate, AJ
    Palm, FC
    Pfann, GA
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2000, 18 (03) : 274 - 283
  • [3] Forecasting banking crises with dynamic panel probit models
    Antunes, Antonio
    Bonfim, Diana
    Monteiro, Nuno
    Rodrigues, Paulo M. M.
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 2018, 34 (02) : 249 - 275
  • [4] Dynamic panel data models in tourism
    Gallego, Angeles
    Angeles Rodriguez-Serrano, M.
    Casanueva, Cristobal
    [J]. CURRENT ISSUES IN TOURISM, 2019, 22 (04) : 379 - 399
  • [5] Nonresponse in dynamic panel data models
    Nicoletti, Cheti
    [J]. JOURNAL OF ECONOMETRICS, 2006, 132 (02) : 461 - 489
  • [6] Estimating and Forecasting with a Dynamic Spatial Panel Data Model
    Baltagi, Badi H.
    Fingleton, Bernard
    Pirotte, Alain
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2014, 76 (01) : 112 - 138
  • [7] Exponential regression of dynamic panel data models
    Kitazawa, Y
    [J]. ECONOMICS LETTERS, 2001, 73 (01) : 7 - 13
  • [8] Dynamic Panel Data Models with Spatial Correlation
    Hujer, Reinhard
    Rodrigues, Paulo J. M.
    Wolf, Katja
    [J]. JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 2008, 228 (5-6): : 612 - 629
  • [9] Spatial dynamic panel models with missing data
    Liu, Jin
    Zhou, Jing
    Lan, Wei
    Wang, Hansheng
    [J]. STAT, 2023, 12 (01):
  • [10] Statistical inference in dynamic panel data models
    Lai, Tze Leung
    Small, Dylan S.
    Liu, Jia
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (09) : 2763 - 2776