On the total vertex irregularity strength of comb product of cycle and path with order 3

被引:0
|
作者
Ramdani, R. [1 ]
Ramdhani, M. A. [2 ]
Delilah, G. G. A. [3 ]
机构
[1] UIN Sunan Gunung Djati Bandung, Dept Math, Fac Sci & Technol, Jl AH Nasution 105, Bandung, Indonesia
[2] UIN Sunan Gunung Djati Bandung, Dept Informat, Fac Sci & Technol, Jl AH Nasution 105, Bandung, Indonesia
[3] UIN Sunan Gunung Djati Bandung, Dept Chem, Fac Sci & Technol, Jl AH Nasution 105, Bandung, Indonesia
关键词
D O I
10.1088/1742-6596/1402/7/077099
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Let G = (V (G),E(G)) be a graph and k be a positive integer. A total k-labeling of G is a map f: V (G) boolean OR E(G) -> {1, 2,...,k}. The vertex weight v under the labeling f is denoted by w(f)(v) and defined by w(f)(v) = f(v) + Sigma(uv is an element of E(G)) f(uv). A total k-labeling of G is called vertex irregular if there are no two vertices with the same weight. The total vertex irregularity strength of G, denoted by tvs(G), is the minimum k such that G has a vertex irregular total k-labeling. Let G and H be two connected graphs. Let o be a vertex of H. The comb product between G and H, denoted by G(sic)(o) H, is a graph obtained by taking one copy of G and vertical bar V (G)vertical bar copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of G. In this paper, we determine the total vertex irregularity strength of comb product of cycle and path with order 3.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Total vertex irregularity strength of comb product of two cycles
    Ramdani, Rismawati
    Ramdhani, Muhammad Ali
    3RD ANNUAL APPLIED SCIENCE AND ENGINEERING CONFERENCE (AASEC 2018), 2018, 197
  • [2] ON TOTAL EDGE IRREGULARITY STRENGTH OF CATEGORICAL PRODUCT OF CYCLE AND PATH
    Siddiqui, Muhammad Kamran
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2012, 9 (01) : 43 - 52
  • [3] TOTAL VERTEX PRODUCT IRREGULARITY STRENGTH OF GRAPHS
    Anholcer, Marcin
    Emadi, Azam Sadat
    Mojdeh, Doost Ali
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1261 - 1276
  • [4] Total distance vertex irregularity strength of some corona product graphs
    Wijayanti, Dian Eka
    Hidayat, Noor
    Indriati, Diari
    Alghofari, Abdul Rouf
    Slamin
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2023, 11 (01) : 209 - 222
  • [5] On the total vertex irregularity strength of trees
    Nurdin
    Baskoro, E. T.
    Salman, A. N. M.
    Gaos, N. N.
    DISCRETE MATHEMATICS, 2010, 310 (21) : 3043 - 3048
  • [6] ON TOTAL VERTEX IRREGULARITY STRENGTH OF GRAPHS
    Packiam, K. Muthu Guru
    Kathiresan, Kumarappan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (01) : 39 - 45
  • [8] Computing the total H-irregularity strength of edge comb product of graphs
    Wahyujati, Mohamad Fahruli
    Susanti, Yeni
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (02): : 177 - 190
  • [9] The total rainbow connection on comb product of cycle and path graphs
    Hastuti, Y.
    Dafik
    Agustin, I. H.
    Prihandini, R. M.
    Alfarisi, R.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [10] Modular total vertex irregularity strength of graphs
    Ali, Gohar
    Baca, Martin
    Lascsakova, Marcela
    Semanicova-Fenovcikova, Andrea
    ALoqaily, Ahmad
    Mlaiki, Nabil
    AIMS MATHEMATICS, 2023, 8 (04): : 7662 - 7671