Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group

被引:21
|
作者
Ardentov, A. A. [1 ]
Sachkov, Yu. L. [1 ]
机构
[1] Russian Acad Sci, Inst Program Syst, Pereslavl Zalesskii, Russia
基金
俄罗斯基础研究基金会;
关键词
optimal control; sub-Riemannian geometry; geometric methods; Engel group; EULER ELASTIC PROBLEM; MAXWELL STRATA; GEOMETRY; SYSTEMS; PLANE;
D O I
10.1070/SM2011v202n11ABEH004200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the Engel group a nilpotent sub-Riemannian problem is considered, a 4-dimensional optimal control problem with a 2-dimensional linear control and an integral cost functional. It arises as a nilpotent approximation to nonholonomic systems with 2-dimensional control in a 4-dimensional space (for example, a system describing the navigation of a mobile robot with trailer). A parametrization of extremal trajectories by Jacobi functions is obtained. A discrete symmetry group and its fixed points, which are Maxwell points, are described. An estimate for the cut time (the time of the loss of optimality) on extremal trajectories is derived on this basis.
引用
收藏
页码:1593 / 1615
页数:23
相关论文
共 50 条
  • [1] Conjugate points in nilpotent sub-riemannian problem on the Engel group
    Ardentov A.A.
    Sachkov Y.L.
    [J]. Journal of Mathematical Sciences, 2013, 195 (3) : 369 - 390
  • [2] Extremal Paths in the Nilpotent sub-Riemannian Problem on the Engel Group (Subcritical Case of Pendulum Oscillations)
    Ardentov A.A.
    [J]. Journal of Mathematical Sciences, 2014, 199 (5) : 481 - 487
  • [3] Cut Locus in the Sub-Riemannian Problem on Engel Group
    A. A. Ardentov
    Yu. L. Sachkov
    [J]. Doklady Mathematics, 2018, 97 : 82 - 85
  • [4] Cut Locus in the Sub-Riemannian Problem on Engel Group
    Ardentov, A. A.
    Sachkov, Yu. L.
    [J]. DOKLADY MATHEMATICS, 2018, 97 (01) : 82 - 85
  • [5] CUT TIME IN SUB-RIEMANNIAN PROBLEM ON ENGEL GROUP
    Ardentov, A. A.
    Sachkov, Yu. L.
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2015, 21 (04) : 958 - 988
  • [6] Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group
    Andrei A. Ardentov
    Yuri L. Sachkov
    [J]. Regular and Chaotic Dynamics, 2017, 22 : 909 - 936
  • [7] Maxwell Strata and Cut Locus in the Sub-Riemannian Problem on the Engel Group
    Ardentov, Andrei A.
    Sachkov, Yuri L.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2017, 22 (08): : 909 - 936
  • [8] Extremal trajectories in the sub-Lorentzian problem on the Engel group
    Ardentov, A. A.
    Sachkov, Yu L.
    Huang, T.
    Yang, X.
    [J]. SBORNIK MATHEMATICS, 2018, 209 (11) : 1547 - 1574
  • [9] Nilpotent (3, 6) Sub-Riemannian Problem
    O. Myasnichenko
    [J]. Journal of Dynamical and Control Systems, 2002, 8 : 573 - 597
  • [10] Extremal Trajectories and Maxwell Strata in Sub-Riemannian Problem on Group of Motions of Pseudo-Euclidean Plane
    Yasir Awais Butt
    Yuri L. Sachkov
    Aamer Iqbal Bhatti
    [J]. Journal of Dynamical and Control Systems, 2014, 20 : 341 - 364