Markov Traces on Affine and Cyclotomic Yokonuma-Hecke Algebras

被引:23
|
作者
Chlouveraki, Maria [1 ]
d'Andecy, Loic Poulain [2 ]
机构
[1] Lab Math UVSQ, Batiment Fermat,45 Ave Etats Unis, F-78035 Versailles, France
[2] Univ Amsterdam, Korteweg de Vries Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
基金
欧洲研究理事会;
关键词
BETHE SUBALGEBRAS; BRAID-GROUPS; REPRESENTATIONS;
D O I
10.1093/imrn/rnv257
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we define and study the affine and cyclotomic Yokonuma-Hecke algebras. These algebras generalize at the same time the Ariki-Koike and affine Hecke algebras and the Yokonuma-Hecke algebras. We study the representation theory of these algebras and construct several bases for them. We then show how we can define Markov traces on them, which we in turn use to construct invariants for framed and classical knots in the solid torus. Finally, we study the Markov trace with zero parameters on the cyclotomic Yokonuma-Hecke algebras and determine the Schur elements with respect to that trace.
引用
收藏
页码:4167 / 4228
页数:62
相关论文
共 50 条