Multiclass network attack classifier using CNN tuned with Genetic Algorithms

被引:0
|
作者
Blanco, Roberto [1 ,2 ]
Malagon, Pedro [1 ,2 ]
Cilla, Juan J. [1 ,2 ]
Moya, Jose M. [1 ,2 ]
机构
[1] Univ Politecn Madrid, ETSI Telecomunicac, LSI, Ave Complutense 30, E-28040 Madrid, Spain
[2] Campus Montegancedo UPM, CCS, Boadilla Del Monte 28660, Spain
来源
2018 28TH INTERNATIONAL SYMPOSIUM ON POWER AND TIMING MODELING, OPTIMIZATION AND SIMULATION (PATMOS) | 2018年
关键词
CNN; Genetic Algorithm; UNSW; NSL-KDD; Classifier; Cybersecurity; IDS;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Intrusion Detection Systems (IDS) are implemented by service providers and network operators to monitor and detect attacks to protect their infrastructures and increase the service availability. Many machine learning algorithms, standalone or combined, have been proposed, including different types of Artificial Neural Networks (ANN). This work evaluates a Convolutional Neural Network (CNN), created for image classification, as a multiclass network attack classifier that can be deployed in a router. A Genetic Algorithm (GA) is used to find a high-quality solution by rearranging the layout of the input features, reducing the amount of different features if required. The tests have been done using two different public datasets with different ratio of attacks: UNSW (10 classes) and NSL-KDD (4 classes). Both classifiers distinguish correctly normal traffic from attack. However, in order to correctly classify the attack, the latter works better because it can be proportionate between the different classes, obtaining a cross-validated multi-class classifier with K of 0.95.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 50 条
  • [1] A Multiclass Classifier Using Genetic Programming
    Chaudhari, Narendra S.
    Purohit, Anuradha
    Tiwari, Aruna
    2008 10TH INTERNATIONAL CONFERENCE ON CONTROL AUTOMATION ROBOTICS & VISION: ICARV 2008, VOLS 1-4, 2008, : 1884 - +
  • [2] Multiclass wound image classification using an ensemble deep CNN-based classifier
    Rostami, Behrouz
    Anisuzzaman, D. M.
    Wang, Chuanbo
    Gopalakrishnan, Sandeep
    Niezgoda, Jeffrey
    Yu, Zeyun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [3] GSFI_SMOTE: a hybrid multiclass classifier for minority attack detection in internet of things network
    Singh, Geeta
    Khare, Neelu
    INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2021, 38 (1-3) : 45 - 61
  • [4] Classifier Fusion Framework using Genetic Algorithms
    Tamminedi, Tejaswi
    Ganapathy, Priya
    Zhang, Lei
    Yadegar, Jacob
    2011 IEEE 22ND INTERNATIONAL SYMPOSIUM ON PERSONAL INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2011, : 2224 - 2228
  • [5] Fuzzy classifier design using genetic algorithms
    Zhou, Enwang
    Khotanzad, Alireza
    PATTERN RECOGNITION, 2007, 40 (12) : 3401 - 3414
  • [6] CNN Classifier Parameter Optimization with Genetic Algorithms: A Case Study of Indonesian Batik Patterns
    Roland, Roland
    Angelica, Cheryl
    Diputra, Julian Andhika
    Azizul, Zati Hakim
    Fitrianah, Devi
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2024, 23 (02)
  • [7] A fuzzy classifier using genetic algorithms for biological data
    Diederich, J
    Fortuner, R
    18TH INTERNATIONAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY - NAFIPS, 1999, : 680 - 684
  • [8] Classifier ensemble selection using hybrid genetic algorithms
    Kim, Young-Won
    Oh, Il-Seok
    PATTERN RECOGNITION LETTERS, 2008, 29 (06) : 796 - 802
  • [9] Optimisation of multiple classifier systems using genetic algorithms
    Sirlantzis, K
    Fairhurst, MC
    2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 1094 - 1097
  • [10] A parallelepiped multispectral image classifier using genetic algorithms
    Xiang, M
    Hung, CC
    Pham, M
    Kuo, BC
    Coleman, T
    IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 482 - 485