Spatiotemporal exploratory models for broad-scale survey data

被引:167
|
作者
Fink, Daniel [1 ]
Hochachka, Wesley M. [1 ]
Zuckerberg, Benjamin [1 ]
Winkler, David W. [2 ]
Shaby, Ben
Munson, M. Arthur [3 ]
Hooker, Giles
Riedewald, Mirek [4 ]
Sheldon, Daniel [3 ]
Kelling, Steve [1 ]
机构
[1] Cornell Lab Ornithol, Ithaca, NY 14850 USA
[2] Cornell Univ, Dept Ecol & Evolutionary Biol, Ithaca, NY 14850 USA
[3] Cornell Univ, Dept Comp Sci, Ithaca, NY 14850 USA
[4] Northeastern Univ, Coll Comp & Informat Sci, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
citizen science; ensemble model; exploratory analysis; multiscale; sample bias; semiparametric; spatiotemporal; survey data; ABUNDANCE; PREDICTION; DYNAMICS; BIRDS; CLASSIFICATION; DISPERSAL; PATTERN; TREES;
D O I
10.1890/09-1340.1
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The distributions of animal populations change and evolve through time. Migratory species exploit different habitats at different times of the year. Biotic and abiotic features that determine where a species lives vary due to natural and anthropogenic factors. This spatiotemporal variation needs to be accounted for in any modeling of species' distributions. In this paper we introduce a semiparametric model that provides a flexible framework for analyzing dynamic patterns of species occurrence and abundance from broad-scale survey data. The spatiotemporal exploratory model (STEM) adds essential spatiotemporal structure to existing techniques for developing species distribution models through a simple parametric structure without requiring a detailed understanding of the underlying dynamic processes. STEMs use a multi-scale strategy to differentiate between local and global-scale spatiotemporal structure. A user-specified species distribution model accounts for spatial and temporal patterning at the local level. These local patterns are then allowed to "scale up'' via ensemble averaging to larger scales. This makes STEMs especially well suited for exploring distributional dynamics arising from a variety of processes. Using data from eBird, an online citizen science bird-monitoring project, we demonstrate that monthly changes in distribution of a migratory species, the Tree Swallow (Tachycineta bicolor), can be more accurately described with a STEM than a conventional bagged decision tree model in which spatiotemporal structure has not been imposed. We also demonstrate that there is no loss of model predictive power when a STEM is used to describe a spatiotemporal distribution with very little spatiotemporal variation; the distribution of a nonmigratory species, the Northern Cardinal (Cardinalis cardinalis).
引用
收藏
页码:2131 / 2147
页数:17
相关论文
共 50 条
  • [1] Broad-scale species distribution models applied to data-poor areas
    Guillaumot, Charlene
    Artois, Jean
    Saucede, Thomas
    Demoustier, Laura
    Moreau, Camille
    Eleaume, Marc
    Aguera, Antonio
    Danis, Bruno
    [J]. PROGRESS IN OCEANOGRAPHY, 2019, 175 : 198 - 207
  • [2] Broad-scale informed consent: A survey of the CTSA landscape
    Chandler, Redonna
    Brady, Kathleen T.
    Jerome, Rebecca N.
    Eder, Milton
    Rothwell, Erin
    Brownley, Kimberly A.
    Harris, Paul A.
    [J]. JOURNAL OF CLINICAL AND TRANSLATIONAL SCIENCE, 2019, 3 (05) : 253 - 260
  • [3] Neutral models for the analysis of broad-scale landscape pattern
    Gardner, Robert H.
    Milne, Bruce T.
    Turner, Monica G.
    O'Neill, Robert V.
    [J]. LANDSCAPE ECOLOGY, 1987, 1 (01) : 19 - 28
  • [4] BROAD-SCALE PSYCHIATRY
    LINN, L
    [J]. SCIENCE, 1966, 153 (3742) : 1368 - &
  • [5] Modeling species distribution dynamics with SpatioTemoral Exploratory Models: Discovering patterns and processes of broad-scale avian migrations
    Fink, Daniel
    Hochack, Wesley M.
    Zuckerberg, Benjamin
    Kelling, Steve T.
    [J]. SPATIAL STATISTICS 2011: MAPPING GLOBAL CHANGE, 2011, 7 : 50 - 55
  • [6] HIVEBEAT - A Highly Interactive Visualization Environment for Broad-Scale Exploratory Analysis and Tracing
    Krueger, Robert
    Bosch, Harald
    Koch, Steffen
    Mueller, Christoph
    Reina, Guido
    Thom, Dennis
    Ertl, Thomas
    [J]. 2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 277 - 278
  • [7] Analysis of UK river restoration using broad-scale data sets
    Smith, Benjamin
    Clifford, Nicholas J.
    Mant, Jenny
    [J]. WATER AND ENVIRONMENT JOURNAL, 2014, 28 (04) : 490 - 501
  • [8] Data-intensive science applied to broad-scale citizen science
    Hochachka, Wesley M.
    Fink, Daniel
    Hutchinson, Rebecca A.
    Sheldon, Daniel
    Wong, Weng-Keen
    Kelling, Steve
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2012, 27 (02) : 130 - 137
  • [9] Estimating the movements of terrestrial animal populations using broad-scale occurrence data
    Supp, Sarah R.
    Bohrer, Gil
    Fieberg, John
    La Sorte, Frank A.
    [J]. MOVEMENT ECOLOGY, 2021, 9 (01)
  • [10] Metric Distribution to Vector: Constructing Data Representation via Broad-Scale Discrepancies
    Liu, Xue
    Sun, Dan
    Cao, Xiaobo
    Ye, Hao
    Wei, Wei
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 4034 - 4049