Maximum likelihood analysis of nonlinear structural equation models with dichotomous variables

被引:8
|
作者
Song, XY [1 ]
Lee, SY [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1207/s15327906mbr4002_1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the development is to augment the observed dichotomous data with the hypothetical missing data that involve the latent underlying continuous measurements and the latent variables in the model. An EM algorithm is implemented. The conditional expectation in the E-step is approximated via observations simulated from the appropriate conditional distributions by a Metropolis-Hastings algorithm within the Gibbs sampler, whilst the M-step is completed by conditional maximization. Convergence is monitored by bridge sampling. Standard errors are also obtained. Results from a simulation study and a real example are presented to illustrate the methodology.
引用
收藏
页码:151 / +
页数:27
相关论文
共 50 条