The symmetric genus spectrum of abelian groups

被引:1
|
作者
May, Coy L. [1 ]
Zimmerman, Jay [1 ]
机构
[1] Towson Univ, 7800 York Rd, Towson, MD 21204 USA
关键词
Symmetric genus; strong symmetric genus; Riemann surface; abelian groups; genus spectrum; density;
D O I
10.26493/1855-3974.1921.d6f
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let S denote the set of positive integers that appear as the symmetric genus of a finite abelian group and let So denote the set of positive integers that appear as the strong symmetric genus of a finite abelian group. The main theorem of this paper is that S = S-0. As a result, we obtain a set of necessary and sufficient conditions for an integer g to belong to S. This also shows that S has an asymptotic density and that it is approximately 0.3284.
引用
收藏
页码:627 / 636
页数:10
相关论文
共 50 条
  • [1] The strong symmetric genus spectrum of abelian groups
    Angel V. Kumchev
    Coy L. May
    Jay J. Zimmerman
    Archiv der Mathematik, 2017, 108 : 341 - 350
  • [2] The strong symmetric genus spectrum of abelian groups
    Kumchev, Angel V.
    May, Coy L.
    Zimmerman, Jay J.
    ARCHIV DER MATHEMATIK, 2017, 108 (04) : 341 - 350
  • [3] The symmetric crosscap spectrum of Abelian groups
    Bacelo, A.
    Etayo, J. J.
    Martinez, E.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (03) : 633 - 640
  • [4] The symmetric crosscap spectrum of Abelian groups
    A. Bacelo
    J. J. Etayo
    E. Martínez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2018, 112 : 633 - 640
  • [5] The real genus spectrum of abelian groups
    May, Coy L.
    Zimmerman, Jay
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (08)
  • [6] The symmetric genus spectrum of finite groups
    Conder, Marston D. E.
    Tucker, Thomas W.
    ARS MATHEMATICA CONTEMPORANEA, 2011, 4 (02) : 271 - 289
  • [7] The strong symmetric genus spectrum of nilpotent groups
    May, Coy L.
    Zimmerman, Jay
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (08) : 3056 - 3063
  • [8] A STRUCTURED DESCRIPTION OF THE GENUS SPECTRUM OF ABELIAN p-GROUPS
    Mueller, Juergen
    Sarkar, Siddhartha
    GLASGOW MATHEMATICAL JOURNAL, 2019, 61 (02) : 381 - 423
  • [9] Symmetric presentations of Abelian groups
    Abért, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (01) : 17 - 20
  • [10] SYMMETRIC DIFFERENCE IN ABELIAN-GROUPS
    GRATZER, G
    PADMANABHAN, R
    PACIFIC JOURNAL OF MATHEMATICS, 1978, 74 (02) : 339 - 347