Performance Comparison of Methods for Tree Species Classification in Multispectral Images

被引:0
|
作者
Dinuls, R. [1 ]
Lorencs, A. [1 ]
Mednieks, I. [1 ]
机构
[1] Inst Elect & Comp Sci, LV-1006 Riga, Latvia
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
R. Dinuls, A. Lorencs, I. Mednieks. Performance Comparison of Methods for Tree Species Classification in Multispectral Images // Electronics and Electrical Engineering. - Kaunas: Technologija, 2011. - No. 5(111). - P. 119-122. A number of methods for classification of individual trees in high resolution multispectral images have been developed. The paper provides comparative analysis of some practicable methods of such type. Classification accuracy into 5 species was tested by computer simulations with real multispectral data obtained using airborne hyperspectral sensor. Coordinates and species of individual trees were supplied for testing by field work. It is shown that classification accuracy better than 97 % can be reached by more sophisticated methods in favorable conditions. Presented results can be used to choose a classification method appropriate for the particular forest inventory task. Ill. 1, bibl. 7 (in English; abstracts in English and Lithuanian).
引用
收藏
页码:119 / 122
页数:4
相关论文
共 50 条
  • [1] Comparison between Hyperspectral and Multispectral Images for the Classification of Coniferous Species
    Cho, Hyunggab
    Lee, Kyu-Sung
    [J]. KOREAN JOURNAL OF REMOTE SENSING, 2014, 30 (01) : 25 - 36
  • [2] Improving Tree Species Classification Using UAS Multispectral Images and Texture Measures
    Gini, Rossana
    Sona, Giovanna
    Ronchetti, Giulia
    Passoni, Daniele
    Pinto, Livio
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (08):
  • [3] Design Problems of Tree Species Classifiers for Multispectral Images
    Lorencs, A.
    Mednieks, I.
    Sinica-Sinavskis, J.
    [J]. AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2011, 45 (02) : 61 - 69
  • [4] Assessment of Tree Detection Methods in Multispectral Aerial Images
    Pulido, Dagoberto
    Salas, Joaquin
    Ros, Matthias
    Puettmann, Klaus
    Karaman, Sertac
    [J]. REMOTE SENSING, 2020, 12 (15)
  • [5] A Comparison of Feature Selection Methods for Multitemporal Tree Species Classification
    Pipkins, Kyle
    Foerster, Michael
    Clasen, Anne
    Schmidt, Tobias
    Kleinschmit, Birgit
    [J]. EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS V, 2014, 9245
  • [6] Exploring Multispectral ALS Data for Tree Species Classification
    Axelsson, Arvid
    Lindberg, Eva
    Olsson, Hakan
    [J]. REMOTE SENSING, 2018, 10 (02):
  • [7] Urban Tree Species Classification Using UAV-Based Multispectral Images and LiDAR Point Clouds
    Li, Xiaofan
    Wang, Lanying
    Guan, Haiyan
    Chen, Ke
    Zang, Yufu
    Yu, Yongtao
    [J]. JOURNAL OF GEOVISUALIZATION AND SPATIAL ANALYSIS, 2024, 8 (01)
  • [8] Exploiting hyperspectral and multispectral images in the detection of tree species: A review
    Yel, Sude Gul
    Gormus, Esra Tunc
    [J]. FRONTIERS IN REMOTE SENSING, 2023, 4
  • [9] Deep Learning Performance Comparison Using Multispectral Images and Vegetation Index for Farmland Classification
    Kim, Semo
    Bae, Seoung-Hun
    Kim, Min-Kwan
    Kang, Lae-Hyong
    [J]. INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2023, 24 (05) : 1533 - 1545
  • [10] Deep Learning Performance Comparison Using Multispectral Images and Vegetation Index for Farmland Classification
    Semo Kim
    Seoung-Hun Bae
    Min-Kwan Kim
    Lae-Hyong Kang
    [J]. International Journal of Aeronautical and Space Sciences, 2023, 24 : 1533 - 1545