An Ultra-Thin Near-Perfect Absorber via Block Copolymer Engineered Metasurfaces

被引:7
|
作者
Cummins, Cian [1 ,2 ]
Flamant, Quentin [1 ]
Dwivedi, Ranjeet [1 ]
Alvarez-Fernandez, Alberto [3 ]
Demazy, Nils [2 ]
Bentaleb, Ahmed [1 ]
Pound-Lana, Gwenaelle [4 ]
Zelsmann, Marc [4 ]
Barois, Philippe [1 ]
Hadziioannou, Georges [2 ]
Baron, Alexandre [1 ]
Fleury, Guillaume [2 ]
Ponsinet, Virginie [1 ]
机构
[1] Univ Bordeaux, Ctr Rech Paul Pascal, CNRS UMR 5031, 115 Ave Schweitzer, F-33600 Pessac, France
[2] Univ Bordeaux, LCPO, Bordeaux INP, CNRS,UMR 5629, F-33600 Pessac, France
[3] UCL, Dept Chem Engn, Torrington Pl, London WC1E 7JE, England
[4] Univ Grenoble Alpes, LTM, Grenoble INP, CNRS,CEA,LETI Minatec, F-38000 Grenoble, France
关键词
Block copolymers; Metasurfaces; Perfect absorbers; Nanoresonators; Flat optics; ARRAYS;
D O I
10.1016/j.jcis.2021.11.163
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Producing ultrathin light absorber layers is attractive towards the integration of lightweight planar components in electronic, photonic, and sensor devices. In this work, we report the experimental demonstration of a thin gold (Au) metallic metasurface with near-perfect visible absorption (similar to 95 %). Au nanoresonators possessing heights from 5 - 15 nm with sub-50 nm diameters were engineered by block copolymer (BCP) templating. The Au nanoresonators were fabricated on an alumina (Al2O3) spacer layer and a reflecting Au mirror, in a film-coupled nanoparticle design. The BCP nanopatterning strategy to produce desired heights of Au nanoresonators was tailored to achieve near-perfect absorption at approximate to 600 nm. The experimental insight described in this work is a step forward towards realizing large area flat optics applications derived from subwavelength-thin metasurfaces. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:375 / 383
页数:9
相关论文
共 50 条
  • [1] Deposited ultra-thin titanium nitride nanorod array as a plasmonic near-perfect light absorber
    Yi-Jun Jen
    Kai-Bin Yang
    Po-Chun Lin
    Meng-Hsun Chung
    [J]. Scientific Reports, 10
  • [2] Deposited ultra-thin titanium nitride nanorod array as a plasmonic near-perfect light absorber
    Jen, Yi-Jun
    Yang, Kai-Bin
    Lin, Po-Chun
    Chung, Meng-Hsun
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [3] Ultra-broadband near-perfect metamaterial absorber for photovoltaic applications
    Nakti, Partha Pratim
    Sarker, Dip
    Tahmid, Md Ishfak
    Zubair, Ahmed
    [J]. NANOSCALE ADVANCES, 2023, 5 (24): : 6858 - 6869
  • [4] Near-perfect optical absorber developed
    不详
    [J]. PHOTONICS SPECTRA, 2013, 47 (02) : 22 - 22
  • [5] Ultra-broadband selective absorber for near-perfect harvesting of solar energy
    Liu, Haotuo
    Xie, Ming
    Ai, Qing
    Yu, Zhihao
    [J]. JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 266
  • [6] Near-perfect absorption throughout the visible using ultra-thin metal films on index-near-zero substrates [Invited]
    Krayer, Lisa J.
    Kim, Jongbum
    Monday, Jeremy N.
    [J]. OPTICAL MATERIALS EXPRESS, 2019, 9 (01) : 330 - 338
  • [7] Ultra-thin, wide-angle perfect absorber for infrared frequencies
    Wu, Chihhui
    Avitzour, Yoav
    Shvets, Gennady
    [J]. METAMATERIALS: FUNDAMENTALS AND APPLICATIONS, 2008, 7029
  • [8] Broadband visible perfect absorber for sensor based on ultra-thin metamaterial
    Xiaoxia Zheng
    Zhongyin Xiao
    Xinyan Ling
    [J]. Journal of Materials Science: Materials in Electronics, 2017, 28 : 7739 - 7744
  • [9] Ultra-thin perfect absorber employing a tunable phase change material
    Kats, Mikhail A.
    Sharma, Deepika
    Lin, Jiao
    Genevet, Patrice
    Blanchard, Romain
    Yang, Zheng
    Qazilbash, M. Mumtaz
    Basov, D. N.
    Ramanathan, Shriram
    Capasso, Federico
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (22)
  • [10] Broadband visible perfect absorber for sensor based on ultra-thin metamaterial
    Zheng, Xiaoxia
    Xiao, Zhongyin
    Ling, Xinyan
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (11) : 7739 - 7744