Tuning surface plasmon-exciton coupling via thickness controlling of excitonic layer

被引:1
|
作者
Cai, Chunfeng [1 ,2 ]
Zhang, Boxuan [1 ]
Wang, Xiaoyu [3 ]
Ling, Li [1 ]
Xu, Tianning [4 ]
Huang, Tianhao [4 ]
Zhu, He [5 ]
Bi, Gang [1 ,2 ]
Wu, Huizhen [3 ]
机构
[1] Zhejiang Univ City Coll, Sch Informat & Elect Engn, Hangzhou 310015, Peoples R China
[2] Zhejiang Univ, State Key lab Silicon Mat, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Dept Phys, Hangzhou 310028, Peoples R China
[4] Zhejiang Univ Technol, Zhijiang Coll, Dept Sci, Shaoxing 312030, Peoples R China
[5] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
关键词
PHOTON;
D O I
10.1209/0295-5075/ac2454
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the Rabi energy tuning effects in strong coupling effects between surface plasmon (SP) and exciton in the Kretschmann-Raether configuration by varying excitonic layer thickness. Both experimental results and theoretical calculations indicate that the anticross-like dispersion relation comes from the rapid change of permittivity near the exciton state and can be attributed to the strong coupling between SP and exciton. Our findings reveal that the excitonic layer plays a key role in the SP-exciton coupling. The increase of the excitonic layer will not only enlarge the Rabi splitting energy, but also cause the redshift of SP dispersion relation. Thus to fulfill the coupling condition, there is a critical thickness of the excitonic layer at specific incident angle (theta(inc) < 90 degrees). With the increase of excitonic layer thickness, the Rabi energy increases monotonously and tends to saturate. Our findings will be beneficial for the better understanding of SP-exciton strong coupling in KR configuration and can be useful in tuning the Rabi energy and resonant conditions according to practical applications. Copyright (C) 2021 EPLA
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Tuning surface plasmon-exciton coupling via thickness dependent plasmon damping
    Balci, Sinan
    Kocabas, Coskun
    Ates, Simge
    Karademir, Ertugrul
    Salihoglu, Omer
    Aydinli, Atilla
    [J]. PHYSICAL REVIEW B, 2012, 86 (23):
  • [2] Tuning nanoscale plasmon-exciton coupling via chemical interface damping
    Dey, Jyotirban
    Virdi, Alisha
    Chandra, Manabendra
    [J]. NANOSCALE, 2023, 15 (44) : 17879 - 17888
  • [3] Plasmon-exciton coupling
    Pelton, Matthew
    Sheldon, Matthew
    Khurgin, Jacob
    [J]. NANOPHOTONICS, 2019, 8 (04) : 513 - 516
  • [4] Plasmon-Exciton Coupling Interaction for Surface Catalytic Reactions
    Wang, Jingang
    Lin, Weihua
    Xu, Xuefeng
    Ma, Fengcai
    Sun, Mengtao
    [J]. CHEMICAL RECORD, 2018, 18 (05): : 481 - 490
  • [5] Plasmon-exciton coupling in a dimer cavity revisited: effect of excitonic dipole orientation
    Li, Ruiqi
    [J]. APPLIED PHYSICS EXPRESS, 2022, 15 (11)
  • [6] Plasmon-Exciton Coupling Effect on Plasmon Damping
    Ye, Lulu
    Zhang, Weidong
    Hu, Aiqin
    Lin, Hai
    Tang, Jinglin
    Wang, Yunkun
    Pan, Chenxinyu
    Wang, Pan
    Guo, Xin
    Tong, Limin
    Gao, Yunan
    Gong, Qihuang
    Lu, Guowei
    [J]. ADVANCED PHOTONICS RESEARCH, 2022, 3 (04):
  • [7] Plasmon-Exciton Coupling in Complex Systems
    Li, Xiaoguang
    Zhou, Li
    Hao, Zhonghua
    Wang, Qu-Quan
    [J]. ADVANCED OPTICAL MATERIALS, 2018, 6 (18):
  • [8] Exploring plasmon-exciton coupling at the surface of TiO2 nanorods
    DeLacy, Brendan
    McCarthy, Danielle
    Zander, Zachary
    Rao, Yi
    Fang, Hui
    Dai, Hai-Lung
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [9] Plasmon-Exciton Coupling Using DNA Templates
    Roller, Eva-Maria
    Argyropoulos, Christos
    Hoegele, Alexander
    Liedl, Tim
    Pilo-Pais, Mauricio
    [J]. NANO LETTERS, 2016, 16 (09) : 5962 - 5966
  • [10] Plasmon-exciton coupling with colloidal metal nanoparticles
    Tao, Andrea
    Rodarte, Andrea
    Marin, Brandon
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251