GLOBAL STABILITY OF AN SIS EPIDEMIC MODEL WITH A FINITE INFECTIOUS PERIOD

被引:0
|
作者
Nakata, Yukihiko [1 ]
Rost, Gergely [2 ]
机构
[1] Shimane Univ, Dept Math, 1060 Nishikawatsu Cho, Matsue, Shimane 6908504, Japan
[2] Univ Szeged, Bolyai Inst, Aradi Vertanuk Tere 1, H-6720 Szeged, Hungary
基金
日本学术振兴会; 欧洲研究理事会;
关键词
INFINITE DELAY; BIFURCATION; POPULATION; EQUATIONS; SIZE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Assuming a general distribution for the sojourn time in the infectious class, we consider an SIS type epidemic model formulated as a scalar integral equation. We prove that the endemic equilibrium of the model is globally asymptotically stable whenever it exists, solving the conjecture of Hethcote and van den Driessche (1995) for the case of nonfatal diseases.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 50 条
  • [1] Global stability of an SIR epidemic model with constant infectious period
    Zhang, Fengpan
    Li, Zi-zhen
    Zhang, Feng
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (01) : 285 - 291
  • [2] Global stability of an SIS epidemic model with delays
    Fushimi, Kei
    Enatsu, Yoichi
    Ishiwata, Emiko
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (13) : 5345 - 5354
  • [3] Global Stability of an SIS Epidemic Model with Time Delays
    Zhan, Liping
    Wang, Huinan
    [J]. PROCEEDINGS OF THE 6TH CONFERENCE OF BIOMATHEMATICS, VOLS I AND II: ADVANCES ON BIOMATHEMATICS, 2008, : 834 - 837
  • [4] Global stability of a fractional order SIS epidemic model
    Wu, Zhaohua
    Cai, Yongli
    Wang, Zhiming
    Wang, Weiming
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 352 : 221 - 248
  • [5] GLOBAL STABILITY ANALYSIS OF A METAPOPULATION SIS EPIDEMIC MODEL
    Iggidr, Abderrahman
    Sallet, Gauthier
    Tsanou, Berge
    [J]. MATHEMATICAL POPULATION STUDIES, 2012, 19 (03) : 115 - 129
  • [6] Global Stability of an SIS Epidemic Model with Age of Vaccination
    Shihua Zhang
    Rui Xu
    [J]. Differential Equations and Dynamical Systems, 2022, 30 : 1 - 22
  • [7] Global Stability of an SIS Epidemic Model with Age of Vaccination
    Zhang, Shihua
    Xu, Rui
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2022, 30 (01) : 1 - 22
  • [8] Global stability of a SEIR epidemic model with infectious force in latent, infected and immune period
    Li, GH
    Jin, Z
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 25 (05) : 1177 - 1184
  • [9] A NOTE ON THE GLOBAL STABILITY OF AN SEIR EPIDEMIC MODEL WITH CONSTANT LATENCY TIME AND INFECTIOUS PERIOD
    Muroya, Yoshiaki
    Enatsu, Yoichi
    Li, Huaixing
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (01): : 173 - 183
  • [10] Global stability for a discrete SIS epidemic model with immigration of infectives
    Enatsu, Yoichi
    Nakata, Yukihiko
    Muroya, Yoshiaki
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (11) : 1913 - 1924