treeNets: A framework for anytime evaluation of belief networks

被引:0
|
作者
Jitnah, N [1 ]
Nicholson, A [1 ]
机构
[1] Monash Univ, Dept Comp Sci, Clayton, Vic 3168, Australia
关键词
uncertainty; Bayesian Networks; anytime algorithms; practical reasoning; graphical models;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new framework for evaluation of belief networks (BNs). It consists of two steps: (1) transforming a belief network into a tree structure called a treeNet (2) performing anytime inference by searching the treeNet. The root of the treeNet represents the query node. Whenever new evidence is incorporated, the posterior probability of the query node is re-calculated, using a variation of the polytree message-passing algorithm. The treeNet framework is geared towards anytime evaluation. Evaluating the treeNet is a tree search problem and we investigate different tree search strategies. Using a best-first method, we can to increase the rate of convergence of the anytime result.
引用
收藏
页码:350 / 364
页数:15
相关论文
共 50 条
  • [1] A best-first search method for anytime evaluation of belief networks
    Jitnah, N
    Nicholson, AE
    [J]. PROGRESS IN CONNECTIONIST-BASED INFORMATION SYSTEMS, VOLS 1 AND 2, 1998, : 600 - 603
  • [2] Anytime belief revision
    Williams, MA
    [J]. IJCAI-97 - PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, 1997, : 74 - 79
  • [3] A FRAMEWORK FOR ORDERING COMPOSITE BELIEFS IN BELIEF NETWORKS
    LI, Z
    DAMBROSIO, B
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1995, 25 (02): : 243 - 255
  • [4] Resource bounded and anytime approximation of belief function computations
    Haenni, R
    Lehmann, N
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2002, 31 (1-2) : 103 - 154
  • [5] A Belief Framework for Similarity Evaluation of Textual or Structured Data
    Znamenskij, Sergej
    [J]. SIMILARITY SEARCH AND APPLICATIONS, SISAP 2015, 2015, 9371 : 138 - 149
  • [6] A Belief Network Reasoning Framework for Fault Localization in Communication Networks
    Liang, Rongyu
    Liu, Feng
    Liu, Jie
    [J]. SENSORS, 2020, 20 (23) : 1 - 21
  • [7] Framework for hardware/software partitioning utilizing Bayesian belief networks
    Olson, JT
    Rozenblit, JW
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 3983 - 3988
  • [8] VALO: A Versatile Anytime Framework for LiDAR-Based Object Detection Deep Neural Networks
    Soyyigit, Ahmet
    Yao, Shuochao
    Yun, Heechul
    [J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2024, 43 (11) : 4045 - 4056
  • [9] Project performance evaluation using deep belief networks
    Nguvulu, Alick
    Yamato, Shoso
    Honma, Toshihisa
    [J]. IEEJ Transactions on Electronics, Information and Systems, 2012, 132 (02) : 306 - 312
  • [10] Arc weights for approximate evaluation of dynamic belief networks
    Jitnah, N
    Nicholson, AE
    [J]. ADVANCED TOPICS IN ARTIFICIAL INTELLIGENCE, 1999, 1747 : 393 - 404