On semi-convergence of ULT iterative method for the singular saddle point problems

被引:2
|
作者
Zheng, Qingqing [1 ]
Lu, Linzhang [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
[2] Guizhou Normal Univ, Sch Math Sci, Guiyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Saddle point problems; Matrix splittings; The ULT iterative method; Convergence analysis; Numerical experiments; CONJUGATE-GRADIENT METHODS; SOR-LIKE METHOD; SPLITTING METHODS; UZAWA ALGORITHMS; INEXACT;
D O I
10.1016/j.camwa.2016.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Zheng and Ma recently proposed an efficient upper and lower triangular (ULT) splitting iterative method for solving the large sparse nonsingular saddle point problems; see Zheng and Ma (2016). In this paper, we further prove the semi-convergence of this method when it is applied to solve the large sparse singular saddle point problems under suitable conditions. The characteristic of eigenvalues of the iteration matrix of the ULT method is analyzed. Also, the pseudo-optimal iteration parameters and the corresponding pseudo optimal semi-convergence factor for some special cases of the ULT method are determined. In addition, numerical experiments are used to show the feasibility and effectiveness of the ULT iterative method for solving singular saddle point problems. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1549 / 1555
页数:7
相关论文
共 50 条
  • [1] The semi-convergence of GSI method for singular saddle point problems
    Miao, Shu-Xin
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2014, 57 (01): : 93 - 100
  • [2] Semi-convergence analysis of parameterized ULT splitting iteration methods for singular saddle point problems
    Li, Jing-Tao
    Ma, Chang-Feng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (10) : 2285 - 2292
  • [3] SEMI-CONVERGENCE ANALYSIS OF THE INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS
    Li, Jian-Lei
    Huang, Ting-Zhu
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2012, 53 (01): : 61 - 70
  • [4] SEMI-CONVERGENCE OF THE GENERALIZED LOCAL HSS METHOD FOR SINGULAR SADDLE POINT PROBLEMS
    Miao, Shu-Xin
    Cao, Yang
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2014, 55 (02): : 71 - 80
  • [6] Semi-convergence analysis of Uzawa–AOR method for singular saddle point problems
    Jin-Song Xiong
    Xing-Bao Gao
    Computational and Applied Mathematics, 2017, 36 : 383 - 395
  • [7] Semi-convergence analysis of the GPIU method for singular nonsymmetric saddle-point problems
    Liang, Zhao-Zheng
    Zhang, Guo-Feng
    NUMERICAL ALGORITHMS, 2015, 70 (01) : 151 - 169
  • [8] On semi-convergence of parameterized Uzawa methods for singular saddle point problems
    Zheng, Bing
    Bai, Zhong-Zhi
    Yang, Xi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) : 808 - 817
  • [9] Semi-convergence analysis of GMSSOR methods for singular saddle point problems
    Zhou, Lijuan
    Zhang, Naimin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (05) : 596 - 605
  • [10] On semi-convergence of a class of relaxation methods for singular saddle point problems
    Fan, Hong-tao
    Zhu, Xin-yun
    Zhen, Bing
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 261 : 68 - 80