Bounded, efficient and doubly robust estimation with inverse weighting

被引:200
|
作者
Tan, Zhiqiang [1 ]
机构
[1] Rutgers State Univ, Dept Stat, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Causal inference; Double robustness; Inverse weighting; Missing data; Nonparametric likelihood; Propensity score; INFERENCE; MODELS;
D O I
10.1093/biomet/asq035
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Consider estimating the mean of an outcome in the presence of missing data or estimating population average treatment effects in causal inference. A doubly robust estimator remains consistent if an outcome regression model or a propensity score model is correctly specified. We build on a previous nonparametric likelihood approach and propose new doubly robust estimators, which have desirable properties in efficiency if the propensity score model is correctly specified, and in boundedness even if the inverse probability weights are highly variable. We compare the new and existing estimators in a simulation study and find that the robustified likelihood estimators yield overall the smallest mean squared errors.
引用
收藏
页码:661 / 682
页数:22
相关论文
共 50 条
  • [1] Inverse probability of treatment weighting with generalized linear outcome models for doubly robust estimation
    Gabriel, Erin E.
    Sachs, Michael C.
    Martinussen, Torben
    Waernbaum, Ingeborg
    Goetghebeur, Els
    Vansteelandt, Stijn
    Sjolander, Arvid
    [J]. STATISTICS IN MEDICINE, 2024, 43 (03) : 534 - 547
  • [2] Inverse probability weighting and doubly robust standardization in the relative survival framework
    Syriopoulou, Elisavet
    Rutherford, Mark J.
    Lambert, Paul C.
    [J]. STATISTICS IN MEDICINE, 2021, 40 (27) : 6069 - 6092
  • [3] Analysis of Incomplete Data Using Inverse Probability Weighting and Doubly Robust Estimators
    Vansteelandt, Stijn
    Carpenter, James
    Kenward, Michael G.
    [J]. METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2010, 6 (01) : 37 - 48
  • [4] DOUBLY ROBUST AND LOCALLY EFFICIENT ESTIMATION WITH MISSING OUTCOMES
    Han, Peisong
    Wang, Lu
    Song, Peter X. -K.
    [J]. STATISTICA SINICA, 2016, 26 (02) : 691 - 719
  • [5] Doubly robust estimation, optimally truncated inverse-intensity weighting and increment-based methods for the analysis of irregularly observed longitudinal data
    Pullenayegum, Eleanor M.
    Feldman, Brian M.
    [J]. STATISTICS IN MEDICINE, 2013, 32 (06) : 1054 - 1072
  • [6] UWB for Robust Indoor Tracking: Weighting of Multipath Components for Efficient Estimation
    Meissner, Paul
    Leitinger, Erik
    Witrisal, Klaus
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2014, 3 (05) : 501 - 504
  • [7] Doubly Robust and Efficient Estimation of Marginal Structural Models for the Hazard Function
    Zheng, Wenjing
    Petersen, Maya
    van der Laan, Mark J.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (01): : 233 - 252
  • [8] Efficient and doubly robust estimation in covariate-missing data problems
    Zhang, Biao
    [J]. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2015, 18 (03): : 213 - 250
  • [9] Impact of Outcome Model Misspecification on Regression and Doubly-Robust Inverse Probability Weighting to Estimate Causal Effect
    Lefebvre, Genevieve
    Gustafson, Paul
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2010, 6 (02):
  • [10] G-computation and doubly robust standardisation for continuous-time data: A comparison with inverse probability weighting
    Chatton, Arthur
    Le Borgne, Florent
    Leyrat, Clemence
    Foucher, Yohann
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (04) : 706 - 718