A free-energy stable nodal discontinuous Galerkin approximation with summation-by-parts property for the Cahn-Hilliard equation

被引:16
|
作者
Manzanero, Juan [1 ,2 ]
Rubio, Gonzalo [1 ,2 ]
Kopriva, David A. [3 ,4 ]
Ferrer, Esteban [1 ,2 ]
Valero, Eusebio [1 ,2 ]
机构
[1] Univ Politecn Madrid, Sch Aeronaut, ETSIAE, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain
[2] Univ Politecn Madrid, Ctr Computat Simulat, Campus Montegancedo, Madrid 28660, Spain
[3] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[4] San Diego State Univ, Computat Sci Res Ctr, San Diego, CA 92182 USA
关键词
Cahn-Hilliard; Summation-by-parts property; High-order methods; Discontinuous Galerkin; SPECTRAL ELEMENT DISCRETIZATION; SCHEMES;
D O I
10.1016/j.jcp.2019.109072
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a nodal Discontinuous Galerkin (DG) scheme for the Cahn-Hilliard equation that satisfies the summation-by-parts simultaneous-approximation-term (SBP-SAT) property. The latter permits us to show that the discrete free-energy is bounded, and as a result, the scheme is provably stable. The scheme and the stability proof are presented for general curvilinear three-dimensional hexahedral meshes. We use the Bassi-Rebay 1 (BR1) scheme to compute interface fluxes, and a first order IMplicit-EXplicit (IMEX) scheme to integrate in time. We provide a semi-discrete stability study, and a fully-discrete proof subject to a positivity condition on the solution. Lastly, we test the theoretical findings using numerical cases that include two and three-dimensional problems. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] A free-energy stable p-adaptive nodal discontinuous Galerkin for the Cahn-Hilliard equation
    Ntoukas, Gerasimos
    Manzanero, Juan
    Rubio, Gonzalo
    Valero, Eusebio
    Ferrer, Esteban
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 442
  • [2] Entropy-stable discontinuous Galerkin approximation with summation-by-parts property for the incompressible Navier-Stokes/Cahn-Hilliard system
    Manzanero, Juan
    Rubio, Gonzalo
    Kopriva, David A.
    Ferrer, Esteban
    Valero, Eusebio
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 408
  • [3] Unconditionally energy stable discontinuous Galerkin schemes for the Cahn-Hilliard equation
    Liu, Hailiang
    Yin, Peimeng
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 390 (390)
  • [4] Entropy–stable discontinuous Galerkin approximation with summation–by–parts property for the incompressible Navier–Stokes/Cahn–Hilliard system
    Manzanero, Juan
    Rubio, Gonzalo
    Kopriva, David A.
    Ferrer, Esteban
    Valero, Eusebio
    [J]. Manzanero, Juan (juan.manzanero@upm.es), 1600, Academic Press Inc. (408):
  • [5] ON THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC FREE-ENERGY
    DEBUSSCHE, A
    DETTORI, L
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 24 (10) : 1491 - 1514
  • [6] A discontinuous Galerkin method for the Cahn-Hilliard equation
    Choo S.M.
    Lee Y.J.
    [J]. Journal of Applied Mathematics and Computing, 2005, 18 (1-2) : 113 - 126
  • [7] A discontinuous Galerkin method for the Cahn-Hilliard equation
    Wells, Garth N.
    Kuhl, Ellen
    Garikipati, Krishna
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (02) : 860 - 877
  • [8] DISCONTINUOUS GALERKIN FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD EQUATION WITH CONVECTION
    Kay, David
    Styles, Vanessa
    Sueli, Endre
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 2660 - 2685
  • [9] Energy Stable Interior Penalty Discontinuous Galerkin Finite Element Method for Cahn-Hilliard Equation
    Sariaydin-Filibelioglu, Ayse
    Karasozen, Bulent
    Uzunca, Murat
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2017, 18 (05) : 303 - 314
  • [10] A stabilized hybrid discontinuous Galerkin method for the Cahn-Hilliard equation
    Medina, Emmanuel Y. Y.
    Toledo, Elson M. M.
    Igreja, Iury
    Rocha, Bernardo M. M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 406