Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation

被引:50
|
作者
Gong, Mingxing [2 ]
Li, Fumin [1 ]
Yao, Zhigang [2 ]
Zhang, Suqi [2 ]
Dong, Jingwen [2 ]
Chen, Yu [1 ]
Tang, Yawen [2 ]
机构
[1] Shaanxi Normal Univ, Sch Mat Sci & Engn, Xian 710062, Peoples R China
[2] Nanjing Normal Univ, Jiangsu Key Lab New Power Batteries, Jiangsu Collaborat Innovat Ctr Biomed Funct Mat, Coll Chem & Mat Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
OXYGEN REDUCTION REACTION; ENHANCED ELECTROCATALYTIC ACTIVITY; ROOM-TEMPERATURE SYNTHESIS; CATALYTIC-ACTIVITY; ETHANOL ELECTROOXIDATION; NANOPARTICLE NETWORKS; METHANOL OXIDATION; PTPB/C CATALYST; GREEN SYNTHESIS; ANODE CATALYST;
D O I
10.1039/c4nr07375d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The Pt84Pb16 (atomic ratio) bimetallic alloy nanoflowers (Pt84Pb16 BANFs) are synthesized by a simple one-pot hydrothermal reduction method that effectively enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR) due to the ensemble effect and the electronic effect. As a result, the mass activity of Pt84Pb16 BANFs for the FAOR is 16.7 times higher than that of commercial Pt black at 0.3 V potential.
引用
收藏
页码:4894 / 4899
页数:6
相关论文
共 50 条
  • [1] Highly Active and Durable Ordered Intermetallic PdFe Electrocatalyst for Formic Acid Electrooxidation Reaction
    Kang, Yun Sik
    Choi, Daeil
    Cho, Jinwon
    Park, Hee-Young
    Lee, Kug-Seung
    Ahn, Minjeh
    Jang, Injoon
    Park, Taehyun
    Ham, Hyung Chul
    Yoo, Sung Jong
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (05) : 4226 - 4237
  • [2] Highly active PtAu alloy surface towards selective formic acid electrooxidation
    Liang, Liang
    Vladimir, Fateev
    Ge, Junjie
    Liu, Changpeng
    Xing, Wei
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2019, 37 : 157 - 162
  • [3] Highly active PtAu alloy surface towards selective formic acid electrooxidation
    Liang Liang
    Fateev Vladimir
    Junjie Ge
    Changpeng Liu
    Wei Xing
    [J]. Journal of Energy Chemistry, 2019, (10) : 157 - 162
  • [4] Bimetallic platinum-bismuth nanoparticles prepared with silsesquioxane for enhanced electrooxidation of formic acid
    Chen, Tingting
    Ge, Cunwang
    Zhang, Yihong
    Zhao, Qin
    Hao, Furui
    Bao, Ning
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (13) : 4548 - 4557
  • [5] A Nanoporous PdCo Alloy as a Highly Active Electrocatalyst for the Oxygen-Reduction Reaction and Formic Acid Electrooxidation
    Xu, Caixia
    Liu, Yunqing
    Zhang, Huan
    Geng, Haoran
    [J]. CHEMISTRY-AN ASIAN JOURNAL, 2013, 8 (11) : 2721 - 2728
  • [6] Highly active Aucore@Ptcluster catalyst for formic acid electrooxidation
    Liao, Mengyin
    Li, Weiping
    Xi, Xiping
    Luo, Chenglong
    Gui, Shuanglin
    Jiang, Cheng
    Mai, Zhaohuan
    Chen, Bing H.
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 791 : 124 - 130
  • [7] Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid
    Jiang, J
    Kucernak, A
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 520 (1-2) : 64 - 70
  • [8] Highly dispersed platinum nanoparticles on graphitic carbon nitride: A highly active and durable electrocatalyst for oxidation of methanol, formic acid and formaldehyde
    Sadhukhan, Mriganka
    Kundu, Manas Kumar
    Bhowmik, Tanmay
    Barman, Sudip
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (15) : 9371 - 9383
  • [9] A highly active carbon-supported PdSn catalyst for formic acid electrooxidation
    Tu, Dandan
    Wu, Bing
    Wang, Bingxing
    Deng, Chao
    Gao, Ying
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 103 (1-2) : 163 - 168
  • [10] Highly Active Carbon-supported PdSn Catalysts for Formic Acid Electrooxidation
    Zhang, Zhonghua
    Ge, Junjie
    Ma, Liang
    Liao, Jianhui
    Lu, Tianhong
    Xing, Wei
    [J]. FUEL CELLS, 2009, 9 (02) : 114 - 120