Knowledge discovery of geochemical patterns from a data-driven perspective

被引:27
|
作者
Yin, Bojun [1 ]
Zuo, Renguang [1 ]
Xiong, Yihui [1 ]
Li, Yongsheng [2 ,3 ]
Yang, Weigang [4 ]
机构
[1] China Univ Geosci, State Key Lab Geol Proc & Mineral Resources, Wuhan 430074, Peoples R China
[2] China Geol Survey, Dev & Res Ctr, Beijing 100037, Peoples R China
[3] Minist Nat Resources, Mineral Explorat Tech Guidance Ctr, Beijing 100083, Peoples R China
[4] Minist Nat Resources, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Data-driven; Knowledge discovery; Data science; Geochemical exploration; RESTRICTED BOLTZMANN MACHINE; WEST QINLING OROGEN; TRACE-ELEMENTS; GOLD DEPOSITS; BIG DATA; ANOMALIES; MINERALIZATION; AREA; IDENTIFICATION; PROSPECTIVITY;
D O I
10.1016/j.gexplo.2021.106872
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We have entered the fourth research paradigm with the overwhelming availability of vast amounts of data. The processing and mining these data for a better understanding of earth systems and predicting mineral resources is challenging. This study discusses a data-driven knowledge discovery of geochemical patterns and presents a case study of geochemical data processing from a data-driven perspective. We employed local indicators of spatial association (LISA), principal component analysis (PCA), and deep autoencoder network (DAN) procedures to explore spatial association of geochemical patterns, extract elemental associations, and detect geochemical anomalies related to Au-Sb mineralization in the Daqiao district, Gansu Province, China. The results indicate the following: (1) both Au and Sb, and Pb and Zn have a close spatial correlation, indicating genetic connections among them; (2) the elemental association of Au, Sb, As, Hg and Ag can be adopted as a geochemical signature for the discovery of Au-Sb polymetallic mineralization in the study area; and (3) the geochemical anomalies identified by DAN exhibit a strong spatial relationship with locations of known mineral deposits and can provide a significant clue for further mineral exploration in this district. These findings indicate that data-driven procedures can help in the knowledge discovery of geochemical patterns in mineral exploration. Additional efforts are required for data-driven knowledge discovery in both geochemical prospecting and mineral exploration.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Paleontology Knowledge Graph for Data-Driven Discovery
    Yiying Deng
    Sicun Song
    Junxuan Fan
    Mao Luo
    Le Yao
    Shaochun Dong
    Yukun Shi
    Linna Zhang
    Yue Wang
    Haipeng Xu
    Huiqing Xu
    Yingying Zhao
    Zhaohui Pan
    Zhangshuai Hou
    Xiaoming Li
    Boheng Shen
    Xinran Chen
    Shuhan Zhang
    Xuejin Wu
    Lida Xing
    Qingqing Liang
    Enze Wang
    [J]. Journal of Earth Science, 2024, 35 (03) : 1024 - 1034
  • [2] Paleontology Knowledge Graph for Data-Driven Discovery
    Deng, Yiying
    Song, Sicun
    Fan, Junxuan
    Luo, Mao
    Yao, Le
    Dong, Shaochun
    Shi, Yukun
    Zhang, Linna
    Wang, Yue
    Xu, Haipeng
    Xu, Huiqing
    Zhao, Yingying
    Pan, Zhaohui
    Hou, Zhangshuai
    Li, Xiaoming
    Shen, Boheng
    Chen, Xinran
    Zhang, Shuhan
    Wu, Xuejin
    Xing, Lida
    Liang, Qingqing
    Wang, Enze
    [J]. JOURNAL OF EARTH SCIENCE, 2024, 35 (03) : 1024 - 1034
  • [3] Integrative Systems Biology for Data-Driven Knowledge Discovery
    Greene, Casey S.
    Troyanskaya, Olga G.
    [J]. SEMINARS IN NEPHROLOGY, 2010, 30 (05) : 443 - 454
  • [4] A data-driven multi-perspective approach to cybersecurity knowledge discovery through topic modelling
    Alqurashi, Fahad
    Ahmad, Istiak
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2024, 107 : 374 - 389
  • [5] From Model, Signal to Knowledge: A Data-Driven Perspective of Fault Detection and Diagnosis
    Dai, Xuewu
    Gao, Zhiwei
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2013, 9 (04) : 2226 - 2238
  • [6] The geoscience knowledge system, ontology and knowledge graph for data-driven discovery: Preface
    Ma, Xiaogang
    Ma, Chao
    Lv, Hairong
    Hu, Xiumian
    [J]. GEOSCIENCE FRONTIERS, 2023, 14 (05)
  • [7] Data-driven healthcare: from patterns to actions
    Grossglauser, M.
    Saner, H.
    [J]. EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2014, 21 : 14 - 17
  • [8] Utilizing domain knowledge in data-driven process discovery: A literature review
    Schuster, Daniel
    van Zelst, Sebastiaan J.
    van der Aalsta, Wil M. P.
    [J]. COMPUTERS IN INDUSTRY, 2022, 137
  • [9] Assessment of Cardiovascular Risk based on a Data-driven Knowledge Discovery Approach
    Mendes, D.
    Paredes, S.
    Rocha, T.
    Carvalho, P.
    Henriques, J.
    Cabiddu, R.
    Morais, J.
    [J]. 2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 6800 - 6803
  • [10] Inductive databases: New concepts for data-driven knowledge discovery processes
    Boulicaut, Jean-Francois
    [J]. DATABASES AND INFORMATION SYSTEMS: COMMUNICATIONS, MATERIALS OF DOCTORAL CONSORTIUM, 2006, : 199 - 200